a: \(\left(x+y\right)^3-\left(x-y\right)^3\)
\(=x^3+3x^2y+3xy^2+y^3-x^3+3x^2y-3x^2y+y^3\)
\(=6x^2y+2y^3\)
\(=2y\left(3x^2+y^2\right)\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
a: \(\left(x+y\right)^3-\left(x-y\right)^3\)
\(=x^3+3x^2y+3xy^2+y^3-x^3+3x^2y-3x^2y+y^3\)
\(=6x^2y+2y^3\)
\(=2y\left(3x^2+y^2\right)\)
Áp dụng a^3+b^3+c^3+3abc=(a+b+c)(a^2+b^2+c^2-ab-ac-bc)
Biết 1/a+1/b+1/c=0
Tính A=bc/a^2 + ca/b^2 +ab/c^2
1, Tính giá trị biểu thức:
P=(1+a/b) (1+b/c) (1+c/a)
2, Cho 1/a+1/b+1/c=0
Tính A=bc/a^2+ca/b^2+ab/c^2
3,Cho x+y+z=0
Chứng minh rằng 2(x^5+y^5+z^5)=5xyz(x^2+y^2+z^2)
1) cho 2x=a+b+c. Cmr: (x-a)(x-b)+(x-b)(x-c)(x-a)=ab+ac+bc-x2
2) cho a, b, c thoả mãn :
ab+bc+ca=abc và a+b+c=1
CM: (a-1)(b-1)(c-1)=0
3) cho x-y=12. Tính:
A= x3-y3-36xy
1. Cho 3 số a,b,c thỏa mãn a+b+c=11 và a2 +b2 +c2=87. Tìm giá trị của ab +bc+ca.
2.Cho a+b+c=0.Khi đó giá trị của biểu thức a3 +b3 +a2c +b2c- abc bằng bao nhiêu
3.Cho x+y=9 và x.y +4. Tính giá trị của x4+3x3y+3xy3 +y4.
Cho \(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=0\left(1\right)\)và \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=2\)
Tính giá trị biểu thức \(A=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=0\)
b, Tính \(\frac{ab}{a^2+b^2+c^2}+\frac{bc}{b^2+c^2-a^2}+\frac{ca}{c^2+a^2-b^2}\)
a)phân tích đa thức x3+y3+z3-3xyz thành nhân tử.
b)cho \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\). vận dụng câu a để tính giá trị biểu thức \(A=\frac{bc}{a^2}+\frac{ca}{b^2}+\frac{ab}{c^2}\)
cho a,b,c>=0 và a+b+c=3. tìm giá trị lớn nhất của biểu thức P=5(ab+bc+ca)-3abc
Cho a+b+c=2011
Tính giá trị biểu thức A=\(\frac{a^3+b^3+c^3-3abc}{a^2+b^2+c^2-ab-bc-ca}\)
Bài1:Cho a+b=1.Tính \(A=a^3+b^3+3ab\left(a^2+b^2\right)+6a^2b^2.\left(a+b\right)\)
Bài 2: Cho a,b,c thuộc R t/m: ab+bc+ca=abc và a+b+c=1.CMR:(a-1)(b-1)(c-1)=0
Bài 3: Cho x-y=12.Tính A=x^3-y^3-36xy
Bài 4: Rút gọn A=(ab+bc+ca)(1/a+1/b+1/c)-abc(1/a^2 + 1/b^2 +1/c^2)