ta có (a+b)^3 =a^3 +b^3 +3ab(a+b)
=>[(a+b) +c ]^3 =(a+b)^3 +c^3 +3c(a+b)[a+b+c)
[(a+b) +c ]^3 = a^3+b^3 +3ab(a+b) +3c(a+b)(a+b+c)+c^3
[(a+b) +c ]^3 =a^3+b^3+c^3 +3(a+b)[ab+c.(a+b+c) ]
[(a+b) +c ]^3 = a^3+b^3+c^3 +3(a+b)[ ab+ca+cb+c^2]
[(a+b) +c ]^3 = a^3+b^3+c^3 +3(a+b)[ a(c+b) +c(b+c)]
[(a+b) +c ]^3 =a^3+b^3+c^3 +3(a+b)(b+c)(a+c) (vế trái)
Điều cần chứng minh giờ thì đã sáng tỏ! ^_^