a ) Gọi ƯCLN ( n , n + 1 ) , d \(\in\)N*
\(\Rightarrow\hept{\begin{cases}n⋮d\\n+1⋮d\end{cases}}\)
\(\Rightarrow\left(n+1\right)-n⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\Rightarrow\)ƯCLN \(\left(n,n+1\right)=1\)
\(\Rightarrow\frac{n}{n+1}\)là phân số tối giản .
a) Gọi d là ƯCLN (n;n+1)
\(\Rightarrow\hept{\begin{cases}n⋮d\\n+1⋮d\end{cases}\Rightarrow n+1-n⋮d\Rightarrow1⋮d\Rightarrow d=1}\)
=> đpcm
b) Gọi d là ƯCLN (2n+5;n+2)
\(\Rightarrow\hept{\begin{cases}2n+5⋮d\\n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}2n+5⋮d\\2n+4⋮d\end{cases}}}\)
=> 2n+5-2n-4 chia hết cho d
=> 1 chia hết cho d
=> d=1
=> đpcm
c) Gọi d là ƯCLN (n+1;3n+2)
\(\Rightarrow\hept{\begin{cases}n+1⋮d\\3n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}3n+3⋮d\\3n+2⋮d\end{cases}\Rightarrow}1⋮d}\)
=> d=1
=> đpcm
Gọi ƯCLN (n,n+1) là d
=>n chia hết cho d
n+1 chia hết cho d
=>n+1-n chia hết cho d
=>1 chia hết cho d
=>d thuộc Ư(1)={1;-1}
=>n,n+1 là phân số tối giản
Vậy......