Chứng minh với mọi số nguyên `x,y` thì
`x^3y^2 - 3x^2y + 2y` chia hết cho `xy - 1`
Bài 1: Chứng minh mọi số nguyên x,y thì:
`a)B=x^3y^2-3x^2y+2y` chia hết `(xy -1)`
`b)C=xy(x^3 +2)-y(xy^3+2x)` chia hết `(x^2 + xy + y^2)`
a) Chứng minh rằng với mọi số nguyên x,y là số nguyên thì giá trị của đa thức:
A= (x+y)(x+2y)(x+3y)(x+4y)+y4 là một số chính phương.
b) Chứng minh rằng n3 +3n2 +2n chia hết cho 6 với mọi số nguyên.
Chứng minh rằng với x,y là số nguyên
NẾU 3X-2Y CHIA HẾT CHO 17 THÌ 11X-13Y CHIA HẾT CHO 17
NẾU 4X+3Y CHIA HẾT CHO 13 THÌ 7X+2Y CHIA HẾT CHO 13
NẾU X+99Y CHIA HẾT CHO 7 THÌ X+Y CHIA HẾT CHO 7
Chứng minh rằng với mọi số nguyên thì x,y thì
a) x(x^2+x)+x(x+1)chia hết cho (x+1) b) xy^2-yx^2+xy chia hết cho xy
Bài 5 Cho x, y là các số thực thỏa mãn x^2 + y^2 + xy 3x 3y + 3=0. Chứng minh biểu thức P = (3x +2y 6)^1010 + ( xy+1)^1011 + 2021 có giá trị là một số nguyên.
chứng minh x^10-y^10 chia hết cho x^4+x^3y+x^2y^2+xy^3+y^4 ?
1; Chứng minh:
a) (x-1)(x^2+x+1)=x^3-1
b)(x^3+x^2y+xy^2+y^3)(x-y)=x^4-y^4
2; Chứng minh biểu thức: n(2n-3)-2n(n+1) luôn chia hết cho 5 với mọi số nguyên n
Ai biết giúp mình với nha!!!!!!!!!!!!!!
Chứng minh rằng với mọi số nguyên \(x,y\) thì \(\left(x+y\right)\left(x+2y\right)\left(x+3y\right)\left(x+4y\right)+y^4\) là số chính phương.