a) x(x² + x) + x(x + 1)
= x²(x + 1) + x(x + 1)
= (x + 1)(x² + x)
= x(x + 1)² ⋮ (x + 1)
b) xy² - yx² + xy
= xy(y - x + 1) ⋮ xy
a) x(x² + x) + x(x + 1)
= x²(x + 1) + x(x + 1)
= (x + 1)(x² + x)
= x(x + 1)² ⋮ (x + 1)
b) xy² - yx² + xy
= xy(y - x + 1) ⋮ xy
Bài 1: Chứng minh mọi số nguyên x,y thì:
`a)B=x^3y^2-3x^2y+2y` chia hết `(xy -1)`
`b)C=xy(x^3 +2)-y(xy^3+2x)` chia hết `(x^2 + xy + y^2)`
Chứng minh với mọi số nguyên `x,y` thì
`x^3y^2 - 3x^2y + 2y` chia hết cho `xy - 1`
Chứng minh với mọi số nguyên x,y thì
x^3y^2 - 3x^2y + 2y chia hết cho xy - 1
Giúp mik với...
Cho x,y,z là các số nguyên khác 0. Chứng minh rằng nếu \(x^2-yz=a,y^2-zx=b,z^2-xy=c\)thì tổng ax+by+cz chia hết cho tổng a+b+c
Cho x,y,z là 3 số nguyên khác nhau. Chứng minh nếu a=x^2-yz; b=y^2-xz; c=z^2-xy thì tổng ax+by+cz chia hết cho (a+b+c)
1; Chứng minh:
a) (x-1)(x^2+x+1)=x^3-1
b)(x^3+x^2y+xy^2+y^3)(x-y)=x^4-y^4
2; Chứng minh biểu thức: n(2n-3)-2n(n+1) luôn chia hết cho 5 với mọi số nguyên n
Ai biết giúp mình với nha!!!!!!!!!!!!!!
a, tim đa thức F(x) biết rang F(x) chia cho x+2 dư, chia cho x-2 dư 22
b, chứng minh rang với mọi a thuộc z thì a^3 +5a chia hết cho 6
c, giai phương trình nghiệm nguyên x^2+xy-213x-2014y-2015=0
a, tim đa thức F(x) biết rang F(x) chia cho x+2 dư, chia cho x-2 dư 22
b, chứng minh rang với mọi a thuộc z thì a^3 +5a chia hết cho 6
c, giai phương trình nghiệm nguyên x^2+xy-213x-2014y-2015=0
Bài 1: Chứng minh rằng với mọi số nguyên x,y ta có: x5y - xy5 chia hết cho 30.
Bài 2: Giải phương trình: x2 + y2 + z2 = y(x + z).