Với a; b; c > 0 và a+ b + c = 1. chứng minh : \(\sqrt{a+1}+\sqrt{b+1}+\sqrt{c+1}<3,5\)
Câu 4: Cho a,b,c là các số không âm và a+b+c=1. Chứng minh: \(\sqrt{a+1}\)+ \(\sqrt{b+1}\) + \(\sqrt{c+1}\) < 3,5
cho a,b,c là các số không âm và a+b+c=1. chứng minh rằng:\(\sqrt{a+1}+\sqrt{b+1}+\sqrt{c+1< 3,5}\)
cho a,b,c là các số không âm và a+b+c=1.chứng minh rằng:\(\sqrt{a+1}+\sqrt{b+1}+\sqrt{c+1}< 3,5\)
chứng minh vs a,b,c>0 và a+b+c=1 : \(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}=<\sqrt{b}\)
1.Chứng minh \(\sqrt{x^2+xy+y^2}+\sqrt{x^2+xz+z^2}\ge\sqrt{y^2+yz+z^2}\)
2. Cho a,b,c>0. Chứng minh \(\left(\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\right)\left(\frac{1}{\sqrt[3]{a}}+\frac{1}{\sqrt[3]{b}}+\frac{1}{\sqrt[3]{c}}\right)-\frac{a+b+c}{\sqrt[3]{abc}}\le6\)
3. Cho a,b>0 , n là số nguyên dương. Chứng minh \(\frac{1}{\sqrt[n]{a}}+\frac{1}{\sqrt[n]{b}}\ge2\sqrt[n]{\frac{2}{a+b}}\)
4. Cho a,b,c >0. Chứng minh \(\frac{1}{a^2+bc}+\frac{1}{b^2+ca}+\frac{1}{c^2+ba}\le\frac{a+b+c}{2abc}\)
cho \(\left\{{}\begin{matrix}a,b,c>0\\abc\ge1\end{matrix}\right.\)
chứng minh: \(\sqrt{a^2+1}+\sqrt{b^2+1}+\sqrt{c^2+1}\) ≤\(\sqrt{2}\)(a+b+c)
Cho a, b, c là các số thực với a,b>0 thỏa mãn: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
Chứng minh rằng: \(\sqrt{a+b}=\sqrt{a+c}+\sqrt{b+c}\)
cho a,b,c>0 và a+b+c>=6
chứng minh S=\(\sqrt{a^2+\frac{1}{b+c}}+\sqrt{b^2+\frac{1}{c+a}}+\sqrt{c^2+\frac{1}{a+b}}>=\frac{3\sqrt{17}}{2}\)