Cho tam giác ABC nội tiếp đường tròn tâm O, đường cao AH. Kẻ đường kính AD.
a) Chứng minh rằng: AB.AC=AH.AD
b) Gọi S là diện tích của tam giác ABC, R là bán kính đường tròn ngoại tiếp tam giác ABC. AB= c, AC=b, BC=a. Chưngs minh rằng: S=
abc/4R
chứng minh rằng tam giác ABC có chu vi 2p ngoại tiếp đường tròn (I ,r )thì diện tích S cửa tam giác có công thức S=p.r
Cho tam giác ABC có diện tích S. Gọi S1 là diện tích hình tròn ngoại tiếp tam giác, S2 là diện tích hình tròn nội tiếp tam giác. Chứng minh rằng 2S < S1 + S2.
Cho tam giác ABC vuông tại A. Gọi R, r, S lần lượt là bán kính đường trong ngoại tiếp, đường tròn nội tiếp và diện tích tam giác ABC. CMR: (R+r)2 lớn hơn hoặc bằng 2S
Cho tam giỏc ABC cú ba góc nhọn, nội tiếp đường tròn tâm O, bán kính R. Kẻ các đường cao AA’, BB’, CC’. Gọi S là diện tớch của tam giỏc ABC và S’ là diện tích của tam giác A’B’C’. 1) Chứng minh rằng AO vuông góc với B’C’
Cho tam giác ABC vuông tại A . Gọi r và R lần lượt là bán kính đường tròn nội tiếp và ngoại tiếp và ngoại tiếp tam giác ABC . Biết r = 5cm , R = 37 cm . Diện tích tam giác ABC là ... cm2
cho tâm giác ABC. Đường phân giác trong của góc A cắt đường tròn ngoại tiếp tam giác ABC tại điểm N. ĐƯờng phân giác của góc ANB cắt cạnh AB tại điểm R. ĐƯờng phân giác của góc ANC cắt cạnh AC tại điểm S. Gọi I là tâm đường tròn nọi tiếp tam giác ABC. C/m 3 điểm R, I , S thẳng hàng
Cho tam giác ABC nhọn (AB < AC) nội tiếp đường tròn (O;R). Gọi H là trực tâm của tam giác ABC. Gọi M là trung điểm của BC
b) Dựng hình bình hành AHIO. Gọi J là tâm đường tròn ngoại tiếp tam giác OBC. Chứng minh rằng OI. OJ = R2
cho tam giác ABC vuông tại A, Gọi r và R lần lượt là bán kính của đường tròn nội tiếp và ngoại tiếp của tam giác ABC. Biết r=5cm, R=37cm. tính diện tích tam giác ABC?