Cho 2 số nguyên a, b thỏa mãn:
a^2+b^2+1=2(ab+a+b)
Chứng minh a, b là 2 số chính phương liên tiếp
Cho a,b thuộc N
Thỏa mãn: a2+b2+1=2.(ab+a+b)
Chứng minh: a và b là hai số chính phương liên tiếp
Giúp mình với nha
cho 2 số nguyên a,b thỏa mãn : a^2 +b^2 +1=2(ab+a+b) . CM : a và b là 2 số chính phương liên tiếp
Cho a và b là số chính phương lẻ liên tiếp. Chứng minh ab-a-b+1 chia hết cho 192.
Cho a,b thuộc Z thỏa mãn a^2+b^2+1=2*(a*b+a+b).
Chứng Minh Rằng: a và b là 2 số chính phương liên tiếp.
AI LÀM NHANH NHẤT MÌNH LIKE CHO NHÉ!
Cho các số nguyên dương a > b thỏa mãn: ab − 1 và a + b nguyên tố cùng
nhau; ab + 1 và a − b nguyên tố cùng nhau. Chứng minh rằng: (a + b)^2 + (ab-1)^2 không phải là một số chính phương.
Chứng minh rằng
a) a^2 + b^2 lớn hơn hoặc bằng \(\frac{\left(a+b\right)^2}{2}\)với mọi a b
b) a^2 +b^2 +c^2 lớn hơn hặc bằng ab + bc + ca với mọi a b c
c) Tích của 4 số tự nhiên liên tiếp cộng thêm 1 là một số chính phương không ?
d) Tổng bình phương của 2 số lẻ liên tiếp có thể là một số chính phương ko ?
a)Chứng minh rằng \(A=\left(n+1^4\right)+n^4+1\)chia hết cho một số chính phương khác 1 với n nguyên dương.
b) Cho \(A=a^2+b^2+c^2\), trong đó a và b là 2 số tự nhiên liên tiếp và c=ab. Chứng minh rằng \(\sqrt{A}\)là 1 số tự nhiên lẻ.