Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Pham Trong Bach

Chứng minh rằng với mọi số tự nhiên n thì các số sau nguyên tố cùng nhau:

a, 2n+3 và 4n+8

b, 2n+5 và 3n+7

c, 7n+10 và 5n+7

Cao Minh Tâm
23 tháng 2 2019 lúc 16:52

a, Đặt d = ƯCLN(2n+3;4n+8)

=> 2(2n+3) ⋮ d; (4n+8) ⋮ d

=> [(4n+8) – (4n+6)]d

=> 2d => d ⋮ {1;2}

Mặt khác 2n+3 là số lẻ nên d ≠ 2.

Vậy d = 1. Hay với mọi số tự nhiên n thì các số 2n+3 và 4n+8 nguyên tố cùng nhau

b, Đặt d = ƯCLN(2n+5;3n+7)

=> 3(2n+5)d; 2(3n+7)d

=> [(6n+15) – (6n+14)]d

=> 1d => d = 1

Vậy d = 1. Hay với mọi số tự nhiên n thì các số 2n+5 và 3n+7 nguyên tố cùng nhau.

c, Đặt d = ƯCLN(7n+10;5n+7)

=> 5(7n+10)d; 7(5n+7)d

=> [(35n+50) – (35n+49)]d

=> 1d => d = 1

Vậy d = 1. Hay với mọi số tự nhiên n thì các số 7n+10 và 5n+7 nguyên tố cùng nhau


Các câu hỏi tương tự
Pham Trong Bach
Xem chi tiết
phạm diệu linh
Xem chi tiết
HEV_NTP
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Uchiha Sasuke
Xem chi tiết
nguyễn hoàng mỹ dân
Xem chi tiết
Lê Nam Chinh
Xem chi tiết
nguyen hai yen
Xem chi tiết
Đỗ Thiên Mai
Xem chi tiết