Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hoang thi dieu linh

Chứng minh rằng trong một tứ giác, tổng hai đường chéo lớn hơn nửa chu vi nhưng nhỏ hơn chu vi của tứ giác ấy.

Yuan Bing Yan _ Viên Băn...
20 tháng 8 2015 lúc 18:46

Theo câu 1 thì AC<p và BD < p => AC + BD < 2p tổng 2 đường chéo nhỏ hơn chu vi (đpcm) 
 giao của AC và BD là O. 
trong tam giác OAB có OB + OA > AB , trong tam giác OBC có OB + OC > BC 
trong tam giác OADcó OD + OA > AD , trong tam giác ODC có OD + OC > DC 
cổng 4 bất đẳng thức cùng chiề này lại ta có: 
2.OB + 2.OD + 2.OA + 2.OC > AB + BC + CD + DA 
<=> 2 BD + 2 AC > 2p <=> BD + AC > p tổng 2 đường chéo lớn hơn nửa chu vi (đpcm) 

OoO_Nhok_Lạnh_Lùng_OoO
24 tháng 8 2017 lúc 20:47

*Theo câu 1 thì AC<p và BD < p => AC + BD < 2p tổng 2 đường chéo nhỏ hơn chu vi (đpcm) 

* giao của AC và BD là O. 

trong tam giác OAB có OB + OA > AB , trong tam giác OBC có OB + OC > BC 

trong tam giác OADcó OD + OA > AD , trong tam giác ODC có OD + OC > DC 

cổng 4 bất đẳng thức cùng chiề này lại ta có: 

2.OB + 2.OD + 2.OA + 2.OC > AB + BC + CD + DA 

<=> 2 BD + 2 AC > 2p <=> BD + AC > p tổng 2 đường chéo lớn hơn nửa chu vi (đpcm)

tự đặt tên vào hình nha :))

Xét tam giác AOB; tam giác BOC; tam giác COD; tam giác AOD ta có:

AO+BO>AB;BO+CO>BC;CO+DO>CD;AO+DO>AD

(áp dụng bất đẳng thức tam giác)

AO+BO+BO+CO+CO+DO+AO+DO>AB+BC+CD+AD( còn đâu tự làm )

2(AO+BO+CO+DO)>AB+BC+CD+AD

=

2.(AC+BD)>AB+BC+CD+AD


Các câu hỏi tương tự
nguyễn thị tuyết nhi
Xem chi tiết
nguyễn vũ hoàng lâm
Xem chi tiết
Minh tú Trần
Xem chi tiết
Nguyễn Minh Thư
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Ha Pham
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Yukino Ayama
Xem chi tiết