Cho tam giác ABC vuông tại A, đường cao AH. Vẽ dường tròn tâm O đường kính AH cắt AB, AC lần lược tại E và F.
a/ Chứng minh tứ giác AEHF là hình chữ nhật.
b/ Chứng minh AE.AB = AF.AC
c/ Gọi I và K lần lượt là trung điểm của BH và HC. Chứng minh IE, KF là tiếp tuyến của dường tròn (O).
d/ Chứng minh SEFKI = \(\frac{1}{2}\) SABC (SEFKI, SABC là diện tích tứ giác EFKI và tam giác ABC)
Cho tam giác ABC vuông tại A, BC = a, r là bán kính của đường tròn nội tiếp tam giác. Chứng minh rằng r/a ≥ (√2 -1)/2
giải nhanh dùm mk nha thks nhìu
Giúp mình với . ( giải chi tiết và cái hình luôn)
Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H là
giao điểm của BM và CN.
a) Tính số đo các góc BMC và BNC.
b) Chứng minh AH vuông góc BC.
c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH
Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho góc
MAB = 60độ . Kẻ dây MN vuông góc với AB tại H.
a) Chứng minh AM và AN là các tiếp tuyến của đường tròn (B; BM).
b) Chứng minh MN2 = 4AH.HB .
c) Chứng minh tam giác BMN là tam giác đều và điểm O là trọng tâm của nó.
d) Tia MO cắt đường tròn (O) tại E, tia MB cắt (B) tại F. Chứng minh ba điểm N, E, F thẳng hàng.
Bài 3, Cho đường tròn (O; R) và điểm A cách O một khoảng bằng 2R, kẻ tiếp tuyến AB tới đường
tròn (B là tiếp điểm).
a) Tính số đo các góc của tam giác OAB
b) Gọi C là điểm đối xứng với B qua OA. Chứng minh điểm C nằm trên đường tròn O và AC
là tiếp tuyến của đường tròn (O).
c) AO cắt đường tròn (O) tại G. Chứng minh G là trọng tâm tam giác ABC.
Bài 4, Từ điểm A ở ngoài đường tròn (O; R) kẻ hai tiếp tuyến AB, AC (với B và C là hai tiếp điểm). Gọi H là giao điểm của OA và BC.
a) Chứng minh OA vuông góc BC và tính tích OH.OA theo R
b) Kẻ đường kính BD của đường tròn (O). Chứng minh CD // OA.
c) Gọi E là hình chiếu của C trên BD, K là giao điểm của AD và CE. Chứng minh K là trung điểm CE.
Cho tam giác ABC có 3 góc nhọn (AB < AC) nội tiếp đường tròn (O) có M là trung điểm của AB, N là trung điểm của BC. Đường cao hạ từ đỉnh A của tam giác ABC cắt đường tròn (O) tại H và cắt đường tròn (T) ngoại tiếp tam giác BNH tại K. Gọi D và E lần lượt là giao điểm của đường thẳng HN với đường thẳng AC và đường tròn (O) ; F là giao điểm của đường thẳng DK và đường tròn (T). Đường tròn ngoại tiếp tam giác DEF cắt đường tròn (T) tại P và cắt đường thẳng AC tại Q. Chứng minh rằng: ba điểm N, P, Q thẳng hàng.
cho nửa đường tròn (O ; R), đường kính AB. Kẻ các tiếp tuyến tại A và B với nửa đường tròn. Qua điểm M thuộc nửa đường tròn ( M khác A và B) kẻ tiếp tuyến thứa 3 cắt các tiếp tuyến tại A và B lần lượt tại C và D . Chứng minh
a) CD = CA + DB
b) Tam giác COD là tam giác vuông
c) AB là tiếp tuyến của đường tròn đường kính CD
giúp mk với
Cho tam giác ABC nội tiếp đường tròn (O;R) đường cao AH.
Chứng minh rằng:
a. AB.AC=2R.AH
b. S = \(\frac{abc}{4R}\) với BC = a, AC = b. S=S\(abc\).
Cho tam giác ABC nội tiếp đường tròn tâm O. Gọi H là trực tâm của tam giác. Chứng minh AH^2 +BC^2= 4R^2
cho tam giác ABC vuông tại A đường cao AH . Biết AH=12cm ,HB=8cm .Tính bán kính đường tròn ngoại tiếp tam giác ABC
Giúp mình câu c với!! Bạn nào còn thức không ? mình cần gấp
Cho nửa đường tròn (O) đường kính AB. Điểm M di chuyển trên nửa đường tròn . tiếp tuyến M và B của nửa đường tròn (O) cắt nhau ở Đ . Qua O kẻ đường thẳng song song với MB , cắt tiếp tuyến tại M ở C và cắt tiếp tuyến tại B ở N
a. chứng minh tam giác CDN là tam giác cân
b. chứng minh AC là tiếp tuyến của nửa đường tròn (O)
c. Tìm vị trí của M trên nửa đường tròn để diện tích tam giác CDN đạt giá trị nhỏ nhất