Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Pham Trong Bach

Chứng minh rằng nếu tứ diện ABCD có AB ⊥ CD và AC ⊥ BD thì AD ⊥ BC.

Cao Minh Tâm
16 tháng 8 2019 lúc 17:21

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Vẽ AH ⊥ (BCD) tại H, ta có CD ⊥ AH và vì CD ⊥ AB ta suy ra CD ⊥ BH. Tương tự vì BD ⊥ AC ta suy ra BD ⊥ CH

Vậy H là trực tâm của tam giác BCD tức là DH ⊥ BC

Vì AH ⊥ BC nên ta suy ra BC ⊥ AD

Cách khác: Trước hết ta hãy chứng minh hệ thức:

Giải sách bài tập Toán 11 | Giải sbt Toán 11 

với bốn điểm A, B, C, D bất kì.

Thực vậy , ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Do đó nếu AB ⊥ CD nghĩa là

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Từ hệ thức (4) ta suy ra 

Giải sách bài tập Toán 11 | Giải sbt Toán 11 ,

do đó AD ⊥ BC.


Các câu hỏi tương tự
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết