Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Truyen Vu Cong Thanh

Chứng minh rằng nếu a + b = 1 thì a2 + b2 >= 1/2

anh_hung_lang_la
2 tháng 5 2016 lúc 14:47

Với mọi a, b ta có : 

( a - b) 2 >= 0 

<=> a2 - 2ab + b2 >= 0 

<=> a2 + b2 >=2ab 

<=> 2 ( a2 + b2 ) >= a2 +2ab + b2

<=> 2 (a2 + b2 ) >= ( a + b )2 mà a+b=1 nên 2 ( a2 + b2 ) >=1 

<=> a2 + b2 >= 1/2 

Dấu “ = " xảy ra khi và chỉ khi : a=b mà a+b=1 nên a=b=1/2

Vương Nguyên
2 tháng 5 2016 lúc 14:48

Với mọi a, b ta có : 

( a - b) 2 >= 0 

<=> a2 - 2ab + b2 >= 0 

<=> a2 + b2 >=2ab 

<=> 2 ( a2 + b2 ) >= a2 +2ab + b2

<=> 2 (a2 + b2 ) >= ( a + b )2 mà a+b=1 nên 2 ( a2 + b2 ) >=1 

<=> a2 + b2 >= 1/2 

Dấu “ = " xảy ra khi và chỉ khi : a=b mà a+b=1 nên a=b=1/2

Trần Quang Đài
2 tháng 5 2016 lúc 14:54

Ta có \(a^2+b^2\ge\frac{\left(a+b\right)^2}{2}=\frac{1}{2}\) (1)

\(ab\le\frac{\left(a+b\right)^2}{4}\)

\(ab\le\frac{1}{4}\Rightarrow2ab\le\frac{1}{2}\)  (2)

Từ (1) và (2) suy ra điều cần chứng minh

Siêu Hacker
2 tháng 5 2016 lúc 15:10

Với mọi a, b ta có : 

( a - b) 2 >= 0 

<=> a2 - 2ab + b2 >= 0 

<=> a2 + b2 >=2ab 

<=> 2 ( a2 + b2 ) >= a2 +2ab + b2

<=> 2 (a2 + b2 ) >= ( a + b )2 mà a+b=1 nên 2 ( a2 + b2 ) >=1 

<=> a2 + b2 >= 1/2 

Dấu “ = " xảy ra khi và chỉ khi : a=b mà a+b=1 nên a=b=1/2

nguyen the hung
2 tháng 5 2016 lúc 15:16

Với mọi a, b ta có : 

( a - b) 2 >= 0 

<=> a2 - 2ab + b2 >= 0 

<=> a2 + b2 >=2ab 

<=> 2 ( a2 + b2 ) >= a2 +2ab + b2

<=> 2 (a2 + b2 ) >= ( a + b )2 mà a+b=1 nên 2 ( a2 + b2 ) >=1 

<=> a2 + b2 >= 1/2 

Dấu “ = " xảy ra khi và chỉ khi : a=b mà a+b=1 nên a=b=1/2

zZz Phan Cả Phát zZz
2 tháng 5 2016 lúc 16:20

Với mọi a, b ta có : 

( a - b) 2 >= 0 

<=> a2 - 2ab + b2 >= 0 

<=> a2 + b2 >=2ab 

<=> 2 ( a2 + b2 ) >= a2 +2ab + b2

<=> 2 (a2 + b2 ) >= ( a + b )2 mà a+b=1 nên 2 ( a2 + b2 ) >=1 

<=> a2 + b2 >= 1/2 

Dấu “ = " xảy ra khi và chỉ khi : a=b mà a+b=1 nên a=b=1/2

Siêu Hacker
2 tháng 5 2016 lúc 16:56

Với mọi a, b ta có : 

( a - b) 2 >= 0 

<=> a2 - 2ab + b2 >= 0 

<=> a2 + b2 >=2ab 

<=> 2 ( a2 + b2 ) >= a2 +2ab + b2

<=> 2 (a2 + b2 ) >= ( a + b )2 mà a+b=1 nên 2 ( a2 + b2 ) >=1 

<=> a2 + b2 >= 1/2 

Dấu “ = " xảy ra khi và chỉ khi : a=b mà a+b=1 nên a=b=1/2

Nguyễn Thanh Loan
3 tháng 5 2016 lúc 14:50

Với mọi a, b ta có : 

( a - b) 2 >= 0 

<=> a2 - 2ab + b2 >= 0 

<=> a2 + b2 >=2ab 

<=> 2 ( a2 + b2 ) >= a2 +2ab + b2

<=> 2 (a2 + b2 ) >= ( a + b )2 mà a+b=1 nên 2 ( a2 + b2 ) >=1 

<=> a2 + b2 >= 1/2 

Dấu “ = " xảy ra khi và chỉ khi : a=b mà a+b=1 nên a=b=1/2

k mk nha Truyen Vu Cong Thanh