Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
San San

Chứng minh rằng nếu a + b = 1 thì a2 + b2 ≥ 1/2

TV Cuber
6 tháng 5 2022 lúc 20:20

\(a+b=1=>b=1-a\)

\(=>a^2+\left(1-a\right)^2\ge\dfrac{1}{2}\)

\(=>a^2+1-2a+a^2\ge\dfrac{1}{2}\)

\(\Leftrightarrow-2a+2a^2+1\ge\dfrac{1}{2}\)

\(\Leftrightarrow\left(-2a+2a^2+1\right).2\ge1\)

\(\Leftrightarrow-4a+4a^2+2\ge1\)

\(\Leftrightarrow-4a+4a^2+1\ge0\)

\(\Leftrightarrow\left(2a-1\right)^2\ge0\left(đúng\right)\)

\(''=''\left(khi\right)2a-1=0=>a=\dfrac{1}{2}\)

hưng phúc
6 tháng 5 2022 lúc 20:20

Ta có: \(\left(a-b\right)^2\ge0\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow a^2+b^2\ge2ab\)

\(\Leftrightarrow a^2+b^2+a^2+b^2\ge2ab+a^2+b^2\)

\(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)

\(\Leftrightarrow2\left(a^2+b^2\right)\ge1\)

\(\Leftrightarrow a^2+b^2\ge\dfrac{1}{2}\left(đpcm\right)\)

Nguyễn Ngọc Huy Toàn
6 tháng 5 2022 lúc 20:15

\(a+b=1\)

Áp dụng BĐT AM-GM, ta có:

\(\dfrac{a^2}{1}+\dfrac{b^2}{1}\ge\dfrac{\left(a+b\right)^2}{2}=\dfrac{1}{2}\) ( đpcm )


Các câu hỏi tương tự
Pham Trong Bach
Xem chi tiết
蝴蝶石蒜
Xem chi tiết
蝴蝶石蒜
Xem chi tiết
Milky Way
Xem chi tiết
Hà Nam Khánh
Xem chi tiết
Hoang Gia Huy
Xem chi tiết
Hoàng Hưng Đạo
Xem chi tiết
Pham Trong Bach
Xem chi tiết
NguyễnMinhHuy
Xem chi tiết