1<=x<=3
=>(x-1)>=0 và (x-3)<=0
=>(x-1)(x-3)<=0
=>x^2-4x+3<=0
=>x^2+3<=4x
Dấu = xảy ra khi x=1 hoặc x=3
1<=x<=3
=>(x-1)>=0 và (x-3)<=0
=>(x-1)(x-3)<=0
=>x^2-4x+3<=0
=>x^2+3<=4x
Dấu = xảy ra khi x=1 hoặc x=3
1) (𝑥 + 7)2 − 𝑥(𝑥 − 3) = 15 2) (2𝑥 + 3)2 − 4𝑥(𝑥 + 2) = 13 3) (3 − 𝑥)2 − (𝑥 − 2)(𝑥 + 1) = 21 4) (𝑥 − 2)2 − (𝑥 + 1)(𝑥 + 3) = −7 5) (𝑥 + 3)(4 − 𝑥) + (𝑥 + 1)(𝑥 − 1) = 10 6) (𝑥 + 1)2 − (𝑥 − 2)(𝑥 + 2) = 13 7) (5𝑥 − 1)(5𝑥 + 1) = 25𝑥2 − 7𝑥 + 15 8) (2𝑥 − 3)2 = 4(𝑥 − 3)(𝑥 + 3) − 4 . Số 2 ở sau là mũ 2 nhé, giải giúp mình vs
a. Chứng minh rằng ∀ 𝑎, 𝑏 > 0 thì 𝑎 2+𝑏 2 𝑎+𝑏 ≥ 𝑎+𝑏 2
b. Chứng minh rằng ∀ 𝑥, 𝑦, 𝑧 > 0 thì 𝑥 2 𝑥+𝑦 + 𝑦 2 𝑦+𝑧 + 𝑧 2 𝑧+𝑥 = 𝑦 2 𝑥+𝑦 + 𝑧 2 𝑦+𝑧 + 𝑥 2 𝑧+𝑥
c. Chứng minh rằng ∀ 𝑥, 𝑦, 𝑧 > 0 thì 𝑥 2 𝑥+𝑦 + 𝑦 2 𝑦+𝑧 + 𝑧 2 𝑧+𝑥 ≥ 𝑥+𝑦+
Rút gọn a) 𝐴 = 𝑥^ 2 (𝑎 − 𝑏) + 𝑏(1 − 𝑥) + 𝑥(𝑏𝑥 + 𝑏) − 𝑎𝑥(𝑥 + 1) b) 𝐵 = 𝑥 2 (11𝑥 − 2) + 𝑥 2 (𝑥 − 1) − 3𝑥(4𝑥 2 − 𝑥 − 2)
Bài 2: Tìm x biết
1. (𝑥 − 3)² = 4𝑥 ²+ 20x + 25
2. 2x(x – 4) + 𝑥² – 16 = 0
Tìm x , biết rằng
a) 𝑥3 - 64𝑥 = 0
b) 𝑥3 - 4𝑥2 = -4𝑥
c)𝑥2 - 16 - (𝑥 - 4) = 0
d)(2𝑥 + 1)2 = (3 + 𝑥)
e)𝑥3 - 6𝑥2 + 12𝑥 - 8 = 0
f)𝑥3 - 7𝑥 - 6 = 0
Chứng minh rằng ∀ 𝑥, 𝑦 ∈ 𝑅 thì (𝑥 + 𝑦) 2 ≥ 4𝑥𝑦
Chứng minh rằng giá trị của biểu thức sau không phụ thuộc vào biến:
c) (𝑥 − 5)(𝑥 + 8) − (𝑥 + 4)(𝑥 − 1); d) 𝑦^4 − (𝑦^2 − 1)(𝑦^2 + 1);
4𝑥 − 8 + 3𝑥(𝑥 − 2) = 0