Ta có: `( x + y )^2 >= 4xy`
`<=> x^2 + 2xy + y^2 >= 4xy`
`<=> x^2 + 2xy - 4xy + y^2 >= 0`
`<=> x^2 - 2xy + y^2 >= 0`
`<=> ( x - y )^2 >= 0` (Luôn đúng `AA x, y in RR`)
Vậy đẳng thức được chứng minh
(x+y)2≥4xy(x+y)2≥4xy
⇔x2+2xy+y2≥4xy⇔x2+2xy+y2≥4xy
⇔x2+2xy−4xy+y2≥0⇔x2+2xy-4xy+y2≥0
⇔x2−2xy+y2≥0⇔x2-2xy+y2≥0
⇔(x−y)2≥0⇔(x-y)2≥0 (Luôn đúng ∀x,y∈R∀x,y∈ℝ)
⇔ ĐPCM