Ta có \(m^2\ge0\) và \(n^2\ge0\)
Do đó \(m^2+n^2\ge0\)
Suy ra \(m^2+n^2+2\ge2\) (điều phải chứng minh).
vì m2 > 0 với mọi m
n2 > 0 với mọi n
=>m2+n2 > 0
do đó m2+ n2 +2 > 0+2=2
Ta có \(m^2\ge0\) và \(n^2\ge0\)
Do đó \(m^2+n^2\ge0\)
Suy ra \(m^2+n^2+2\ge2\) (điều phải chứng minh).
vì m2 > 0 với mọi m
n2 > 0 với mọi n
=>m2+n2 > 0
do đó m2+ n2 +2 > 0+2=2
Với số m và số n bất kì, chứng tỏ rằng: m 2 + n 2 + 2 ≥ 2(m + n)
Chứng minh rằng : m2+n2+2 > 2 (m+n)
Chứng minh rằng với mọi số nguyên n thì (2 - n) ( n2 - 3n + 1) + n (n2 + 12 )+ 8 chia hết cho 5
1.Chứng minh rằng \(2^{2^{6n+2}}+3⋮19\) với ,mọi n\(\in\)N
2.Chứng minh rằng với n>0 ta có 52n-1.22n-15n+1+3n+1.22n-1 chia hết cho 38
Chứng minh rằng với mọi số tự nhiên n ,ta có:
(n + 3)2 - n2 chia hết cho 3
(n - 5)2 - n2 chia hết cho 5 và không chia hết cho 2
Chứng minh rằng: n 2 (n + 1) + 2n(n + 1) luôn chia hết cho 6 với mọi số nguyên n.
m3+n3+p3-3nmp=(m+n+p)(m2+n2+p2-mn-np-mp)
chứng minh đẳng thức sau
Chứng minh rằng với mọi số tự nhiên m,n ta có: 4mn(m2-n2) chia hết cho 24?
Cho Q = 3 n ( n 2 + 2 ) - 2 ( n 3 - n 2 ) - 2 n 2 - 7 n . Chứng minh Q luôn chia hết cho 6 với mọi số nguyên n.