\(M=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{2009}\left(1+3\right)\)
\(=4\left(3+3^3+...+3^{2009}\right)⋮4\)
\(M=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+...+3^{2008}\left(1+3+3^2\right)\)
\(=13\left(3+3^4+...+3^{2008}\right)⋮13\)
\(M=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{2009}\left(1+3\right)\)
\(=4\left(3+3^3+...+3^{2009}\right)⋮4\)
\(M=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+...+3^{2008}\left(1+3+3^2\right)\)
\(=13\left(3+3^4+...+3^{2008}\right)⋮13\)
CHỨNG MINH RẰNG
A= 88+220 chia hết cho 17
B= 2+ 22+23+24+...+260 chia hết cho 3; cho 7; cho 15
C= 1+3+32+33+...+31991 chia hết cho 13; cho 41
D=3+32+33+34+...+32010 chia hết cho 4;cho 13
a) Chứng minh: B = 31 + 32 + 33 + 34 + … + 32010 chia hết cho 4.
b) Chứng minh: C = 51 + 52 + 53 + 54 + … + 52010 chia hết cho 31.
c) Cho S=17+52+53+54+ ... +52010 . Tìm số dư khi chia S cho 31.
a) Chứng minh: A = 21 +22 +23 +24 +...+ 22020 chia hết cho 3; và 7.
b) Chứng minh: B =31 +32 +33 +34 +...+22022 chia hết cho 4 và 13.
Bài 1: a, Chứng minh: A=21+22+23+24+...+22010 chia hết cho 3 và 7
b, Chứng minh: B=31+32+33+34+...+22010 chia hết cho 4 và 13
c, Chứng minh: C=51+52+53+54+...+52010 chia hết cho 6 và 31
d, Chứng minh: C=71+72+73+74+...+72010 chia hết cho 8 và 57
Bài 2: So sánh
a, A=20+21+22+23+...+22011 và B=22011-1
b, A=2019.2021 và B=20202
a. Chứng minh A=21+22+23+24+...+2100 chia hết cho 3
b. Chứng minh B=31+32+33+34+...+299chia hết cho 13
c. Chứng minh C=51+52+53+54+...+5105 chia hết cho 6 và 31
A = 119 +118 +117 +... +11+1. Chứng minh rằng A chia hết cho 5
B = 2 + 22 + 23 +... + 260 . Chứng minh rằng B chia hết cho 7 và 15
C = 3 + 33 + 35 +... + 31991 . Chứng minh rằng C chia hết cho 13 và 41
mình cần gấp giúp mình với
1 Cho số tự nhiên n với n > 2. Biết 2n - 1 là 1 số nguyên tố. Chứng tỏ rằng số 2n + 1 là hợp số
2 Cho 3 số: p, p+2014.k, p+2014.k là các số nguyên tố lớn hơn 3 vá p chia cho 3 dư 1. Chứng minh rằng k chia hết cho 6
3 Cho 2 số tự nhiên a và b, trong đó a là số lẻ. Chứng minh rằng 2 số a và a.b+22013là 2 số nguyên tố cùng nhau
4 Cho m và n là các số tự nhiên, m là số lẻ. Chứng tỏ rằng m và mn+8 là 2 số nguyên tố cùng nhau
5 Cho A=32011-32010+...+33-32+3-1. Chứng minh rằng a=(32012-1) : 4
6 Cho số abc chia hết cho 37. Chứng minh rằng số bca chia hết cho 37
bài 1 :
a) so sánh A và B biết : A =229 và B=539
b) B = 31+32+33+34+...+32010 chia hết cho 4 và 13
c) tính A = 1-3+32-33+34-...+398-399+3100
bài 2 tìm cái số nguyên n thỏa mãn
a) tìm các số nguyên n sao cho 7 ⋮ (n+1)
b) tìm các số nguyên n sao cho (2n + 5 ) ⋮ (n+1)
a)Chứng tỏ: A = 31 + 32 + 33 + … + 360 chia hết cho 13
b)Cho M = 2 + 22 + 23 + … + 220 . Chứng tỏ rằng M 5
hãy giúp mik và chỉ cách trình bày cho mik nhen
a)Chứng tỏ: A = 31 + 32 + 33 + … + 360 chia hết cho 13
b)Cho M = 2 + 22 + 23 + … + 220 . Chứng tỏ rằng M
5
đăng 3 lần rồi giúp mik ik