Chứng minh rằng tồn tại duy nhất một cặp số (x,y) thỏa mãn phương trình \(x^2-4x+y-6\sqrt{y}+13=0\)
Bài 1:Giải các phương trình sau:
a)\(2x+1+4\sqrt{x+1}=2\sqrt{1-2x}\)
b)\(x^2+4x+7=\left(x+4\right)\sqrt{x^2+7}\)
c)\(3x+2\left(\sqrt{x-4}+6\right)=12\sqrt{x}\)
d)\(\sqrt{x-2}+\sqrt{7-x}=x^2+7x-27\)
e)\(\left(\sqrt{2-x}+1\right)\left(\sqrt{x+3}-\sqrt{x-1}\right)=4\)
Bài 2:Cho a,b,c thỏa mãn a+b+c=1
Chứng minh\(\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}\le\sqrt{21}\)
Bài 3:Giải hệ phương trình:
\(\hept{\begin{cases}x+y+xy=2+3\sqrt{2}\\^{x^2+y^2=6}\end{cases}}\)
Bài 4:Tìm các cặp số nguyên (x;y) thỏa mãn:
\(x^2+2y^2+2xy-5x-5y=-6\)
Để (x+y) nguyên
Bài 5:Cho các số thực x,y,z thỏa mãn điều kiện
\(x+y+z+xy+yz+xz=6\)
Chứng minh rằng \(x^2+y^2+z^2\ge3\)
Bài 6:Cho 4 số thực a,b,c,d thỏa mãn các điều kiện:
\(a\ne0\)\(4a+2b+c+d=0\)
Chứng minh \(b^2\ge4ac+4ad\)
Bài 7:Với ba số thực a,b,c thỏa mãn điều kiện \(a\left(a-b+c\right)< 0\)Chứng minh phương trình \(ax^2+bx+c=0\)(ẩn x) luôn có hai nghiệm phân biệt
Cho các số thực x, y thỏa mãn -4 ≤ x ≤ 4; 0 ≤ y ≤ 16. Chứng minh rằng: \(x\sqrt{16-y}+\sqrt{y\left(16-x^2\right)}\) ≤ 16
. Cho các số thực x,y thỏa mãn 0<x<1, 0<y<1 Chứng minh rằng \(x+y+x\sqrt{1-y^2}+y\sqrt{1-x^2}\le\frac{3\sqrt{3}}{2}\)
Cho x,y,z là các số thực dương thỏa mãn điều kiện xy+yz+xz=12. Chứng minh rằng:
\(\sqrt[x]{\dfrac{\left(12+y^2\right)\left(12+z^2\right)}{12+x^2}}\)+ \(\sqrt[y]{\dfrac{\left(12+x^2\right)\left(12+z^2\right)}{12+y^2}}\)+ \(\sqrt[z]{\dfrac{\left(12+x^2\right)\left(12+y^2\right)}{12+z^2}}\)
Cho x, y là các số thực thỏa mãn 0<x, y<1.
Chứng minh rằng \(x+y+x\sqrt{1-y^2}+y\sqrt{1-x^2}\le\frac{3\sqrt{3}}{2}.\)
1/ Cho \(x+y+x=\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\)( x,y,z>0). Chứng minh rằng: x=y=z
2/ Cho hai số thực x,y thỏa mãn: xy=1 và x>y. Chứng minh rằng: \(\frac{x^2+y^2}{x-y}\ge2\sqrt{2}\)
3/ Chứng minh rằng \(a+b\ge2\sqrt{ab}\)
Giúp mình với!
Cho x, y là các số thực thỏa mãn: \(\left(x+\sqrt{1+x^2}\right)\left(y+\sqrt{1+y^2}\right)=1\)
Chứng minh rằng x + y = 0
Cho hệ phương trình 2x + y = 3 và 3x+2y= m (m là tham số)
a) Chứng tỏ rằng hệ phương trình luôn có một nghiệm duy nhất với mọi m. tìm nghiệm đó
b) với giá trị nào của m thì hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn x >0 và y>0 (x=6-m; y=2m-9)