a: Ta có: \(\left(ac+bd\right)^2-\left(ad+bc\right)^2\)
\(=a^2c^2+b^2d^2+2abcd-a^2d^2-b^2c^2-2abcd\)
\(=a^2\left(c^2-d^2\right)-b^2\left(c^2-d^2\right)\)
\(=\left(a^2-b^2\right)\left(c^2-d^2\right)\)
a: Ta có: \(\left(ac+bd\right)^2-\left(ad+bc\right)^2\)
\(=a^2c^2+b^2d^2+2abcd-a^2d^2-b^2c^2-2abcd\)
\(=a^2\left(c^2-d^2\right)-b^2\left(c^2-d^2\right)\)
\(=\left(a^2-b^2\right)\left(c^2-d^2\right)\)
Chứng minh rằng:
a) \(\left(a^2-b^2\right)\left(c^2-d^2\right)=\left(ac+bd\right)^2-\left(ad+bc\right)^2\)
b) Nếu \(x^2+y^2+z^2=xy+xz+yz\) thì x=y=z
Cho \(x^2-y=a,y^2-z=b,z^2-x=c\)\(c\) ( a , b , c là các hằng số ) Chứng minh rằng giá trị của biểu thức sau không phụ thuộc vào giá trị của các biến x , y , z :
P = \(^{x^3\left(z-y^2\right)+y^3\left(x-z^2\right)+z^3\left(y-x^2\right)+xyz\left(xyz-1\right)}\)
Chứng minh rằng nếu \(\left(a^2+b^2+b^2\right)\left(x^2+y^2+z^2\right)=\left(ax+by+cz\right)^2\)với x,y,z khác 0 thì \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)
help
Phân tích các đa thức sau thành nhân tử.
a, \(xy\left(x+y\right)+yz\left(y+z\right)+xz\left(z+x\right)+3xyz.\)
b, \(xy\left(x+y\right)-yz\left(y+z\right)-zx\left(z-x\right)\)
c, \(x\left(y^2-z^2\right)+y\left(z^2-x^2\right)+z\left(x^2-y^2\right)\)
Cộng các phân thức đại số sau vào với nhau:
\(\frac{1}{\left(y-z\right)\left(x^2+xz-y^2-yz\right)}+\frac{1}{\left(z-x\right)\left(y^2+xy-z^2-zx\right)}+\frac{1}{\left(x-y\right)\left(z^2+yz-x^2-xy\right)}\)
Phân tích đa thức thành nhân tử :
1) \(A=\left(x^2+y^2+z^2\right)\left(x+y+z\right)^2+\left(xy+yz+zx\right)^2\)
2)\(B=2\left(x^4+y^4+z^4\right)-\left(x^2+y^2+z^2\right)-2\left(x^2+y^2+z^2\right)\left(x+y+z\right)^2+\left(x+y+z\right)^4\)
3)\(\left(a+b+c\right)^3-4\left(a^3+b^3+c^3\right)-12abc\)
Chứng minh rằng nếu m=a+b+c thì
\(\left(am+bc\right)\left(bm+ac\right)\left(cm+ab\right)=\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2\)
Chứng minh rằng phân thức sau đây không phụ thuộc vào x và y :
a, \(\frac{\left(x^2+a\right)\left(1+a\right)+a^2x^2+1}{\left(x^2-a\right)\left(1-a\right)+a^2x^2+1}\)
Phân tích các biểu thức sau thành nhân tử:
1) A=\(x^2y+xy^2+x^2z+xz^2+y^2z+yz^2+2xyz\)
2) B=\(x^2y+xy^2+x^2z+xz^2+y^2z+yz^2+3xyz\)
3) C=\(yz\left(y+z\right)+zx\left(z-x\right)-xy\left(x+y\right)\)
4) D=\(2a^2b+4ab^2-a^2c+ac^2-4b^2c+2bc^2-4a^2c\)
5) \(E=y\left(x-2z\right)^2+8xyz+x\left(y-2z\right)^2-2z\left(x+y\right)^2\)
6)F=\(8x^3\left(y+z\right)-y^3\left(z+2x\right)-z^3\left(2x-y\right)\)
LÀM ĐƯỢC CÂU NÀO THÌ LÀM NHÉ, KO CẦN THIẾT PHẢI LÀM HẾT ĐÂU!