Gt<=>(a+b)(a^2-ab+b^2)-ab(a+b)>=0
<=>(a+b)(a-b)^2>=0 (đúng với mọi a,b >=0)
=> bdt9 đúng
Gt<=>(a+b)(a^2-ab+b^2)-ab(a+b)>=0
<=>(a+b)(a-b)^2>=0 (đúng với mọi a,b >=0)
=> bdt9 đúng
Cho a, b là các số thực dương mà a3 +b3 = a−b. Chứng minh rằng a2 +4b2 < 1.
Chứng minh rằng với mọi a, b, c ta luôn có:
( a + b + c ) 3 = a 3 + b 3 + c 3 + 3(a + b)(b + c)(c + a).
Chứng minh rằng: a 3 + b 3 = (a + b)[ a - b 2 + ab]
chứng minh rằng : (a + 2)² + (b + 2)² +(a² + b² + ab) > 0 với mọi số thực a,b
chứng minh :
a3 +b3 =(a+b).(a2 -ab +b2)
a3 -b3 =(a-b).(a2 +ab +b2)
Cho a, b, c > 0 . Chứng minh rằng a3 +b3 +c3 >=3abc.
Cho a + b + c = 0. Chứng minh rằng a 3 + b 3 + c 3 = 3abc.
Chứng minh rằng nếu a3 +b3+c3 =3abc thì a+b+c =0 hoặc a = b= c
Chứng minh:
a) ( a 2 - ab + b 2 ) ( a + b ) = a 3 + b 3 ;
b) ( a 3 + a 2 b + ab 2 + b 3 ) ( a - b ) = a 4 - b 4 ;
Với a;b>0.Hãy chứng minh
\(\frac{1}{a3}+\frac{a3}{b3}+b3>=\frac{1}{a}+\frac{a}{b}+b\)