Chứng minh : \(\frac{2-\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2}}}}}{2-\sqrt{2+\sqrt{2+\sqrt{2}}}}< \frac{1}{3}\)
Chứng minh bất đẳng thức :\(\frac{2-\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2}}}}}{2-\sqrt{2+\sqrt{2+\sqrt{2}}}}< \frac{1}{3}\)
AI BIẾT LÀM HỘ NHA ! TỚ TICK CHO
1, A= \(\frac{x+2}{x\sqrt{x-1}}+\frac{\sqrt{x+1}}{x+\sqrt{x+1}}-\frac{1}{\sqrt{x-1}}\)
2, chứng minh biểu thức sau có giá trị ko phụ thuộc vào x
A= \(\sqrt{x}+\frac{3\sqrt{2-\sqrt{3}}.6\sqrt{7+4\sqrt{3}}-x}{4\sqrt{9-4\sqrt{5}}.\sqrt{2}+\sqrt{5}+\sqrt{x}}\)
chứng minh đẳng thức :
\(\frac{1+\frac{\sqrt{3}}{2}}{1+\sqrt{1+\frac{\sqrt{3}}{2}}}+\frac{1-\frac{\sqrt{3}}{2}}{1-\sqrt{1-\frac{\sqrt{3}}{2}}}=1\)
a. Chứng minh : \(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
b. Áp dụng : Tính giá trị của biểu thức :
\(M=\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+\frac{1}{4\sqrt{3}+3\sqrt{4}}+...+\frac{1}{25\sqrt{24}+24\sqrt{25}}\)
cảm ơn các bạn trước nhé!
Rút gọn :
\(B=\frac{6-6\sqrt{3}}{1-\sqrt{3}}+\frac{3\sqrt{3}+3}{\sqrt{3}+1}\)
\(C=\frac{3+\sqrt{3}}{\sqrt{3}}+\frac{\sqrt{6}-\sqrt{3}}{1-\sqrt{2}}\)
\(D=\frac{\sqrt{10}-\sqrt{2}}{\sqrt{5}-1}+\frac{2-\sqrt{2}}{\sqrt{2}-1}\)
\(E=\frac{\sqrt{15}-\sqrt{12}}{\sqrt{5}-2}+\frac{1}{2-\sqrt{3}}\)
\(F=\left(\frac{15}{\sqrt{6}+1}+\frac{4}{\sqrt{6}-2}-\frac{12}{3-\sqrt{6}}\right)\left(\sqrt{6}+11\right)\)
Chứng minh rằng: \(\frac{1}{2}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}< 2\)
Giải pt
\(\sqrt{2x+\frac{2013-1}{\sqrt{2-x^2}}}-\sqrt[3]{2014-\frac{2013-1}{\sqrt{2-x^2}}}=\sqrt{x+2013}-\sqrt[3]{x+1}\)
Tính các tổng
a. \(A=\frac{1}{\sqrt{1}-\sqrt{2}}-\frac{1}{\sqrt{2}-\sqrt{3}}+\frac{1}{\sqrt{3}-\sqrt{4}}-\frac{1}{\sqrt{4}-\sqrt{5}}+....+\frac{1}{\sqrt{2007}-\sqrt{2008}}\)
b. \(B=\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+\frac{1}{4\sqrt{3}+3\sqrt{4}}+...+\frac{1}{121\sqrt{120}+120\sqrt{121}}\)
Mọi người giúp tớ với nhé!! Cảm ơn trước nha!!