\(\dfrac{2x-2xy-3+3y}{1-3y+3y^2-y^3}=\dfrac{2x\left(1-y\right)-3\left(1-y\right)}{\left(1-y\right)^3}\)
\(=\dfrac{\left(2x-3\right)\left(1-y\right)}{\left(1-y\right)^3}=\dfrac{2x-3}{\left(1-y\right)^2}\)
\(\dfrac{2x-2xy-3+3y}{1-3y+3y^2-y^3}=\dfrac{2x\left(1-y\right)-3\left(1-y\right)}{\left(1-y\right)^3}\)
\(=\dfrac{\left(2x-3\right)\left(1-y\right)}{\left(1-y\right)^3}=\dfrac{2x-3}{\left(1-y\right)^2}\)
Rút gọn biểu thức:
\(\left(\dfrac{y}{xy-2x^2}-\dfrac{2}{y^2+y-2xy-2x}\right)\left(1+\dfrac{3y+y^2}{3+y}\right)\)
Chứng minh rằng giá trị của biểu thức sau không phụ thuộc vào giá trị của các biến (với điều kiện xy\(\ne\)0;+ -3/2 y;x\(\ne\)-y
\(\frac{5x\left(2x-3y\right)^2}{3y\left(4x^2-9y^2\right)}:\frac{\left(2x^2+2xy\right)\left(2x-3y\right)}{2x^2y+5xy^2+3y^3}\)
C/minh các đẳng thức sau:
\(a,\dfrac{2\left(x-y\right)}{3y-3x}=\dfrac{-2}{3}\)
\(b,\dfrac{x-2}{-x}=\dfrac{8-x^3}{x\left(x^2+2x+4\right)}\)
\(c,\dfrac{3x}{x+y}=\dfrac{-3x\left(x-y\right)}{y^2-x^2}\)
Rút gọn các phân thức:
a)\(\dfrac{14xy^5\left(2x-3y\right)}{21x^2y\left(2x-3y\right)^2}\) b)\(\dfrac{8xy\left(3x-1\right)^3}{12x^3\left(1-3x\right)}\)
c) \(\dfrac{20x^2-45
}{\left(2x+3\right)^2}\) d) \(\dfrac{5x^2-10xy}{2\left(2y-x\right)^3}\)
BT20: Cho đơn thức \(B=\left(-\dfrac{1}{2}xy^3\right)\left(2x^3y\right)^2\)
a, Thu gọn đơn thức B
b, Tính giá trị của B khi \(x=2,y=\dfrac{1}{2}\)
1.Tính \(\dfrac{x}{x+2}-\dfrac{x}{x-2}\)
2.Phân tích đa thức thành nhân tử
1)\(\left(x^2y^2-8\right)-1\)
2)\(x^3y-2x^2y+xy-xy^3\)
3)\(x^3-2x^2y+xy^2\)
4)\(x^2+2x-y^2+1\)
5)\(x^2+2x-4y^2+1\)
6)\(x^2-6x-y^2+9\)
CM đẳng thức
b) \(\frac{x^2+y^2+2xy+1}{x^2-y^2+1+2x}\) = \(\frac{x+y-1}{x+1-y}\)
c) \(\frac{\left(x^2+2\right)^2-4x^2}{y\left(^{x^2+2}\right)-2xy-\left(x-1\right)^2-1}\) = \(\frac{x^2+2x+2}{y-1}\)
d) \(\frac{3y-2-3xy+2x}{1-3x-x^3+3x^2}\)= \(\frac{3y-2}{\left(1-x\right)^2}\)
Thực hiện phép tính:
a) \(\dfrac{2}{5}xy\left(x^2y-5x+10y\right)\)
b) \(\left(x^2-1\right)\left(x^2+2x+y\right)\)
c) \(\left(x+3y\right)^2\)
d) \(\left(4x-y\right)^3\)
e) \(\left(x^2-2y\right)\left(x^2+2y\right)\)
g) \(18x^4y^2z:10x^4y\)
h) \(\left(x^3y^3+\dfrac{1}{2}x^2y^3-x^3y^2\right):\dfrac{1}{3}x^2y^2\)
i) \(\left(6x^3-7x^2-x+2\right):\left(2x+1\right)\)
k) \(\dfrac{5x-1}{3x^2y}+\dfrac{x+1}{3x^2y}\)
l) \(\dfrac{3x+1}{x^2-3x+1}+\dfrac{x^2-6x}{x^2-3x+1}\)
m) \(\dfrac{2x+3}{10x-4}+\dfrac{5-3x}{4-10x}\)
n) \(\dfrac{x}{x^2+2x+1}+\dfrac{3}{5x^2-5}\)
o) \(\dfrac{x^2+2}{x^3-1}+\dfrac{2}{x^2+x+1}+\dfrac{1}{1-x}\)
p) \(\dfrac{4x+2}{15x^3y}\dfrac{5y-3}{9x^2y}+\dfrac{x+1}{5xy^3}\)
q) \(\dfrac{2x-7}{10x-4}-\dfrac{3x+5}{4-10x}\)
r) \(\dfrac{3}{2x+6}-\dfrac{x-6}{2x^2+6x}\)
x) \(\dfrac{4y^2}{11x^4}.\left(-\dfrac{3x^2}{8y}\right)\)
y) \(\dfrac{x^2-4}{3x+12}.\dfrac{x+4}{2x-4}\)
z) \(\left(x^2-25\right):\dfrac{2x+10}{3x-7}\)
t) \(\left(\dfrac{2x+1}{2x-1}-\dfrac{2x-1}{2x+1}\right):\dfrac{4x}{10x-5}\)
w) \(\left(\dfrac{1}{x^2+x}-\dfrac{2-x}{x+1}\right):\left(\dfrac{1}{x}+x-2\right)\)
chia đa thức \(\left(4x^5+3xy^4-y^5+2x^4y-6x^3y^2\right)\div\left(2x^3+y^3-2xy^2\right)\)