\(C=\left(x^2-1\right)\left(x^2+1\right)\left(x^4+1\right)\left(x^8+1\right)\left(x^{16}+1\right)\left(x^{32}+1\right)-x^{64}\\ =\left(x^4-1\right)\left(x^4+1\right)\left(x^8+1\right)\left(x^{16}+1\right)\left(x^{32}+1\right)-x^{64}\\ =\left(x^8-1\right)\left(x^8+1\right)\left(x^{16}+1\right)\left(x^{32}+1\right)-x^{64}\\ =\left(x^{16}-1\right)\left(x^{16}+1\right)\left(x^{32}+1\right)-x^{64}\\ =\left(x^{32}-1\right)\left(x^{32}+1\right)-x^{64}\\ =\left(x^{64}-1\right)-x^{64}\\ =-1\)
Vậy đa thức ko phụ thuộc vào x
\(C=(x^2-1)(x^2+1)(x^4+1)(x^8+1)(x^{16}+1)(x^{32}+1)-x^{64}\\=(x^4-1)(x^4+1)(x^8+1)(x^{16}+1)(x^{32}+1)-x^{64}\\=(x^8-1)(x^8+1)(x^{16}+1)(x^{32}+1)-x^{64}\\=(x^{16}-1)(x^{16}+1)(x^{32}+1)-x^{64}\\=(x^{32}-1)(x^{32}+1)-x^{64}\\=x^{64}-1-x^{64}\\=-1\)
⇒ Giá trị của C không phụ thuộc vào giá trị của biến
\(C=\left(x^2-1\right)\left(x^2+1\right)\left(x^4+1\right)\left(x^8+1\right)\left(x^{16}+1\right)\left(x^{32}+1\right)-x^{64}\)
\(C=\left(x^4-1\right)\left(x^4+1\right)\left(x^8+1\right)\left(x^{16}+1\right)\left(x^{32}+1\right)-x^{64}\)
\(C=\left(x^8-1\right)\left(x^8+1\right)\left(x^{16}+1\right)\left(x^{32}+1\right)-x^{64}\)
\(C=\left(x^{16}+1\right)\left(x^{16}-1\right)\left(x^{32}+1\right)-x^{64}\)
\(C=\left(x^{32}-1\right)\left(x^{32}+1\right)-x^{64}\)
\(C=x^{64}-1-x^{64}\)
\(C=-1\)
Vậy: ...