`B = 1/4 x^2 + 2/5 x^2 + 2`
Do `x^2 >= 0 ∀ x`
`=> {(1/4x^2 >=0),(2/5 x^2 >=0):} ∀ x`
`=> 1/4 x^2 + 2/5 x^2 >=0 ∀ x`
`=> 1/4 x^2 + 2/5 x^2 + 2 >= 2∀ x`
Hay `B > 0 ∀ x (đpcm)`
\(B=\dfrac{1}{4}x^2+\dfrac{2}{5}x^2+2=\dfrac{5}{20}x^2+\dfrac{8}{20}x^2+2\)
\(=\dfrac{13}{20}x^2+2>=2>0\forall x\)
=>B luôn dương với mọi x