Chứng minh bất đẳng thức
\(1,\frac{a}{b}+\frac{b}{a}\ge2\)
\(2,a^2+b^2+c^2\ge ab+bc+ca\)
\(3,\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
\(4,\frac{1}{a}+\frac{1}{b}\ge\frac{4}{ab}\left(a,b>0\right)\)
\(5, 3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)
Chứng minh bất đẳng thức: \(\left(\frac{a+b}{2}+\frac{c+d}{2}\right)\ge\left(a+c\right)\left(b+d\right)\)
Chứng minh các bất đẳng thức sau:
1. \(\frac{3}{a+b}+\frac{2}{c+d}+\frac{a+b}{\left(a+c\right)\left(b+d\right)}\ge\frac{12}{a+b+c+d}\)
2. \(\frac{\left(a+b\right)^2}{a+b-c}+\frac{\left(b+c\right)^2}{-a+b+c}+\frac{\left(c+a\right)^2}{a-b+c}\ge4.\left(a+b+c\right)\)
Hôm nay mình lại post bài lên nữa đây :D( lần này thì các bạn khỏi lo sai đề giống lần trước nhé,lần trước mình bất cẩn quá :D )
1.Với \(a,b,c>0\).Chứng minh:
\(\left[\left(a^2+b^2+c^2\right)\left(a+b+c\right)+3abc\right]^2\ge2\left[a^2+b^2+c^2+\left(a+b+c\right)^2\right]\left[a^3b+b^3c+c^3a+abc\left(a+b+c\right)\right]\)
2.Với \(\hept{\begin{cases}a,b,c>0\\a+b+c=3\end{cases}}\).Chứng minh:
\(\frac{a}{b^2+c}+\frac{b}{c^2+a}+\frac{c}{a^2+b}\ge\frac{3}{2}\)
3.Với \(a,b,c>0\).Chứng minh:
\(ab\left(b^2+ca\right)+bc\left(c^2+ab\right)+ca\left(a^2+bc\right)\ge2\left(a^2b^2+b^2c^2+c^2a^2\right)\)
Giúp mình với! Mình đang cần gấp. Các bạn làm được bài nào thì giúp đỡ mình nhé! Cảm ơn!
Bài 1: Cho các số thực dương a,b,c. Chứng minh rằng:
\(\frac{a^2}{\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}}+\frac{b^2}{\sqrt{\left(2b^2+c^2\right)\left(2b^2+a^2\right)}}+\frac{c^2}{\sqrt{\left(2c^2+a^2\right)\left(2c^2+b^2\right)}}\le1\).
Bài 2: Cho các số thực dương a,b,c,d. Chứng minh rằng:
\(\frac{a-b}{a+2b+c}+\frac{b-c}{b+2c+d}+\frac{c-d}{c+2d+a}+\frac{d-a}{d+2a+b}\ge0\).
Bài 3: Cho các số thực dương a,b,c. Chứng minh rằng:
\(\frac{\sqrt{b+c}}{a}+\frac{\sqrt{c+a}}{b}+\frac{\sqrt{a+b}}{c}\ge\frac{4\left(a+b+c\right)}{\sqrt{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\).
Bài 4:Cho a,b,c>0, a+b+c=3. Chứng minh rằng:
a)\(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\ge1\).
b)\(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+a^2}\ge\frac{3}{2}\).
c)\(\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\ge3\).
Bài 5: Cho a,b,c >0. Chứng minh rằng:
\(\frac{2a^2+ab}{\left(b+c+\sqrt{ca}\right)^2}+\frac{2b^2+bc}{\left(c+a+\sqrt{ab}\right)^2}+\frac{2c^2+ca}{\left(a+b+\sqrt{bc}\right)^2}\ge1\).
chứng minh các bất đẳng thức sau:
a)\(\left(\dfrac{a+b}{2}\right)^2>=ab\) với mọi a,b
b)\(a^2+b^2+c^2>ab+bc+ca\)
Cho a,b,c>0. Chứng minh: \(a^2+b^2+c^2\ge3\left(ab+bc+ca\right)\) và \(\frac{\left(a+b+c\right)^2}{ab+bc+ca}+\frac{ab+bc+ca}{\left(a+b+c\right)^2}\ge\frac{10}{3}\)
CM CÁC BẤT ĐẲNG THỨC SAU
A) \(2\left(A^2+B^2\right)\ge\left(A+B\right)^2\ge2\left(AB+BA\right)\)
B) \(3\left(A^2+B^2+C^2\right)\ge\left(A+B+C\right)^2\ge3\left(AB+BC+CA\right)\)
Mạnh mẽ hơn Nesbitt?
Với a, b, c là các số thực sao cho: \(a+b+c>0,\text{ }ab+bc+ca>0,\text{ }\left(a+b\right)\left(b+c\right)\left(c+a\right)>0\) thì:
\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}-\frac{3}{2}\ge\left(\Sigma ab\right)\left(\Sigma\frac{1}{\left(a+b\right)^2}\right)-\frac{9}{4}\)
Chứng minh: \(4\left(a+b+c\right)\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2\cdot\left(\text{VT}-\text{VP}\right)\)
\(=\left(a+b\right)\left(b+c\right)\left(c+a\right)\left[\Sigma\left(ab+bc-2ca\right)^2+\left(ab+bc+ca\right)\Sigma\left(a-b\right)^2\right]\)
\(+\left(a+b+c\right)\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2\ge0\)