Ta có: \(a^4+1\ge a\left(a^2+1\right)\)
\(\Leftrightarrow a^4+1\ge a^3+a\)
\(\Leftrightarrow a^4-a^3+1-a\ge0\)
\(\Leftrightarrow a^3\left(a-1\right)-\left(a-1\right)\ge0\)
\(\Leftrightarrow\left(a-1\right)\left(a^3-1\right)\ge0\)
\(\Leftrightarrow\left(a-1\right)^2\left(a^2+a+1\right)\ge0\)Ta thấy \(a^2+a+1=a^2+2a.\dfrac{1}{2}+\dfrac{1}{4}+1-\dfrac{1}{4}=\left(a+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\)Vì \(\left(a+\dfrac{1}{2}\right)^2\ge0\) ( với mọi a )
Vậy \(\left(a-1\right)^2\left(a^2+a+1\right)\ge0\) ( với mọi a )
Khi \(x-1\ne0\) hay \(x\ne1\) ( vì \(x^2+1>0\) với mọi x )