Với x,y,z>0, áp dụng BĐT Bunhiacopxki
\(\left[\left(x+y\right)+\left(y+z\right)+\left(z+x\right)\right]\left(1+1+1\right)\ge\left(\sqrt{x+y}+\sqrt{y+z}+\sqrt{z+x}\right)^2\)
\(\Leftrightarrow\left(x+y+z\right)2.3\ge\left(\sqrt{x+y}+\sqrt{y+z}+\sqrt{z+x}\right)^2\)
\(\Leftrightarrow6\ge\left(\sqrt{x+y}+\sqrt{y+z}+\sqrt{z+x}\right)^2\)
\(\Leftrightarrow\sqrt{x+y}+\sqrt{y+z}+\sqrt{z+x}\le\sqrt{6}\) (đpcm)
Dấu "=" khi \(x=y=z=\frac{1}{3}\)
Áp dụng bất đẳng thức Cô - si cho các cặp số không âm, ta có:
\(\sqrt{\frac{2}{3}\left(x+y\right)}\le\frac{\frac{2}{3}+x+y}{2}=\frac{2+3x+3y}{6}\)
\(\sqrt{\frac{2}{3}\left(y+z\right)}\le\frac{\frac{2}{3}+y+z}{2}=\frac{2+3y+3z}{6}\)
\(\sqrt{\frac{2}{3}\left(z+x\right)}\le\frac{\frac{2}{3}+z+x}{2}=\frac{2+3z+3x}{6}\)
Cộng từng vế của các bất đẳng thức trên \(\sqrt{\frac{2}{3}}\text{∑}\sqrt{x+y}\le2\)
\(\Rightarrow\text{∑}\sqrt{x+y}\le\sqrt{6}\)
Vậy \(\sqrt{x+y}+\sqrt{y+z}+\sqrt{z+x}\le\sqrt{6}\)
Đẳng thức xảy ra khi \(x=y=z=\frac{1}{3}\)
Cái giả thiết ghi \(x,y,z\ge0\) mà sử dụng ít thấy bthường ghê,mình làm phần tìm Min nhé !
Ta chứng minh \(\sqrt{x+y}+\sqrt{y+z}\ge\sqrt{x+y+z}+\sqrt{y}\)
\(\Leftrightarrow x+y+y+z+2\sqrt{\left(x+y\right)\left(y+z\right)}\ge x+y+z+y+2\sqrt{y\left(x+y+z\right)}\)
\(\Leftrightarrow\sqrt{\left(x+y\right)\left(y+z\right)}\ge\sqrt{y\left(x+y+z\right)}\)
\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\ge y\left(x+y+z\right)\)
\(\Leftrightarrow xz\ge0\)( đúng )
Ta có:\(\sqrt{x+y}+\sqrt{y+z}+\sqrt{z+x}\)
\(\ge\sqrt{x+y+z}+\sqrt{y}+\sqrt{z+x}\)
\(\ge\sqrt{x+y+z}+\sqrt{x+y+z}=2\) ( cái này bạn tự chứng minh )
Dấu "=" xảy ra chẳng hạn 2 số bằng 0 và 1 số bằng 1.