Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Bla bla bla

Cho x,y,z>0 và khác nhau đôi một. Chứng minh rằng giá trị của biểu thức P không phụ thuộc vào giá trị của các biến:

P=\(\dfrac{x}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}-\sqrt{z}\right)}+\dfrac{y}{\left(\sqrt{y}-\sqrt{z}\right)\left(\sqrt{y}-\sqrt{x}\right)}+\dfrac{z}{\left(\sqrt{z}-\sqrt{x}\right)\left(\sqrt{z}-\sqrt{y}\right)}\)

Nguyễn Lê Phước Thịnh
17 tháng 9 2023 lúc 8:29

\(P=\dfrac{x\left(\sqrt{y}-\sqrt{z}\right)-y\left(\sqrt{x}-\sqrt{z}\right)}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}-\sqrt{z}\right)\left(\sqrt{y}-\sqrt{z}\right)}+\dfrac{z}{\left(\sqrt{x}-\sqrt{z}\right)\left(\sqrt{y}-\sqrt{z}\right)}\)

\(=\dfrac{x\sqrt{y}-x\sqrt{z}-y\sqrt{x}+y\sqrt{z}+z\left(\sqrt{x}-\sqrt{y}\right)}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}-\sqrt{z}\right)\left(\sqrt{y}-\sqrt{z}\right)}\)

\(=\dfrac{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)-\sqrt{z}\left(x-y\right)+z\left(\sqrt{x}-\sqrt{y}\right)}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}-\sqrt{z}\right)\left(\sqrt{y}-\sqrt{z}\right)}\)

\(=\dfrac{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{xy}-\sqrt{z}\left(\sqrt{x}+\sqrt{y}\right)+z\right)}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}-\sqrt{z}\right)\left(\sqrt{y}-\sqrt{z}\right)}\)

\(=\dfrac{\left(\sqrt{xy}-\sqrt{zx}-\sqrt{zy}+z\right)}{\left(\sqrt{x}-\sqrt{z}\right)\left(\sqrt{y}-\sqrt{z}\right)}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{y}-\sqrt{z}\right)-\sqrt{z}\left(\sqrt{y}-\sqrt{z}\right)}{\left(\sqrt{x}-\sqrt{z}\right)\left(\sqrt{y}-\sqrt{z}\right)}\)

\(=\dfrac{\left(\sqrt{y}-\sqrt{z}\right)\left(\sqrt{x}-\sqrt{z}\right)}{\left(\sqrt{x}-\sqrt{z}\right)\left(\sqrt{y}-\sqrt{z}\right)}\)

=1


Các câu hỏi tương tự
Mai lê hà
Xem chi tiết
dinh huong
Xem chi tiết
Trần ngô hạ uyên
Xem chi tiết
Khiêm Nguyễn Gia
Xem chi tiết
Nguyễn Đan Xuân Nghi
Xem chi tiết
Hồng Minh
Xem chi tiết
Nguyễn Vũ Thảo My
Xem chi tiết
Xem chi tiết
Đoàn Thị Thu Hương
Xem chi tiết