cho x, y, z thỏa mãn x^3+y^3+3xyz<0 và z>0. chứng minh x+y<z
Cho x,y,z > 0 thỏa mãn xy + yz +zx = 1.Chứng minh
\(\frac{x-y}{z^2+1}\)+\(\frac{y-z}{x^2+1}\)+\(\frac{z-x}{y^2+1}\)=0
Cho x;y;z >0 thỏa mãn x+ y + z ≤ 1. Chứng minh rằng :
\(17\left(x+y+z\right)+2\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\ge35\)
cho x,y,z>0 thỏa mãn x+y+z=1.chứng minh \(\frac{x^4+y^4}{x^3+y^3}+\frac{y^4+z^4}{y^3+z^3}+\frac{z^4+x^4}{z^3+x^3}\ge1\)
Cho x,y,z thỏa mãn x^3-y^2-y=y^3-z^2-z=z^3-x^2-x=1/3
Chứng minh rằng x,y,z dương và x=y=z
cho x,y,z >0 thỏa mãn x+y+z=9 Tìm max A=xy/x+y + yz/y+z + zx/z+x
cho 3 số thực x,y,z>0 thỏa mãn xyz=1 và 1/x+1/y+1/z<x+y+z. Chứng minh rằng có chính xác 1 trong 3 số x, y, z lớn hơn 1
Cho x ; y ; z là các số nguyên thỏa mãn : x+y+z-4 = 0.
Chứng minh rằng : (x+y)(y+z)(z+x) lớn hơn hoặc bằng x3y3z3
Cho x,y,z thỏa mãn :{x+y+z=0,x^2+y^2+z^2=14. tính B= x^4+y^4+z^4