Câu hỏi của Vu Dang Toan - Toán lớp 9 - Học toán với OnlineMath
Câu hỏi của Vu Dang Toan - Toán lớp 9 - Học toán với OnlineMath
Tìm GTNN của \(A=\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\) biết x , y , z > 0 và \(\sqrt{xy}+\sqrt{yz}+\sqrt{xz}=1\)
x+y+z+xy+yz+zx =6
tìm min x^2 + y^2 + z^2
CMR: Nếu \(\frac{x^2-yz}{a}=\frac{y^2-zx}{b}=\frac{z^2-xy}{c}\) thì \(\frac{a^2-bc}{x}=\frac{b^2-ca}{y}=\frac{c^2-ab}{z}\)
Cho 3 số thực dương x , y , z thỏa mãn \(x+y+z\ge3\)
Chứng minh rằng: \(\frac{x^2}{x+\sqrt{yz}}+\frac{y^2}{y+\sqrt{xz}}+\frac{z^2}{z+\sqrt{xy}}\ge\frac{3}{2}\)
Cho x , y , z > 0 và \(x+y+z=1\)
Chứng minh rằng \(\frac{1-x^2}{x+yz}+\frac{1-y^2}{y+xz}+\frac{1-z^2}{z+xy}\ge6\)
giải hệ pt
\(\left\{\begin{matrix}\frac{xy}{x+y}=\frac{2}{3}\\\frac{yz}{y+z}=\frac{3}{2}\\\frac{x\text{z}}{x+z}=\frac{6}{7}\end{matrix}\right.\)
Giải hpt:
\(\left\{\begin{matrix}x+y+z=6\\xy+yz-zx=7\\x^2+y^2+z^2=14\end{matrix}\right.\)
cho số thực:x, y, z thỏa mãn: \(y^2+yz+z^2=1-\frac{3x^2}{2}\). tìm Max và Min của biểu thức: A=x+y+z
1) Cho x,y,z là các số thực dương và xyz = 1.
Tìm giá trị lớn nhất của biểu thức: \(\frac{2}{2x^2+y^2+3}+\frac{2}{2y^2+z^2+3}+\frac{2}{2z^2+x^2+3}\)
2)ghpt \(\left\{\begin{matrix}3x+xy=12\\x^2+y^2+x+7y=20\end{matrix}\right.\)