Bài này có nhiều cách, xin phép làm 2 cách đơn giản. Tuy nhiên ở cách 2 tính sai chỗ nào thì tự check:) (chắc ko sai đâu:v đừng lo quá mức)
Cách 1: \(x^2+y^2\ge2xy\)
\(2x^2+2z^2\ge4xz\)
\(2y^2+2z^2\ge4yz\)
Cộng theo vế 3 bđt trên kết hợp giả thiết suy ra \(S\ge10\)
Cách 2:
Xét \(S-2\left[xy+2yz+2zx\right]\)
\(=\left(x-y\right)^2+2\left(y-z\right)^2+2\left(z-x\right)^2\ge0\)
Do đó...
Tuy nhiên, sau đây mới là cách phân tích ngắn nhất chỉ với 2 bình phương không âm!
Ta có:\(S-2\left[xy+2\left(yz+zx\right)\right]\)\(=2\left(x-y\right)^2+\left(x+y-2z\right)^2\ge0\)
Vậy \(S\ge10\). It's verry beautiful!