\(P^2=\left(1.x+2.y\right)^2\le\left(1+2^2\right)\left(x^2+y^2\right)=5\)
\(\Rightarrow-\sqrt{5}\le P\le\sqrt{5}\)
\(P_{max}=\sqrt{5}\) khi \(\left(x;y\right)=\left(\dfrac{1}{\sqrt{5}};\dfrac{2}{\sqrt{5}}\right)\)
\(P_{min}=-\sqrt{5}\) khi \(\left(x;y\right)=\left(-\dfrac{1}{\sqrt{5}};-\dfrac{2}{\sqrt{5}}\right)\)