S=5/4(x-1)+5/x-1+9/4(y-1)+9/(y-1)+7/4(x+y)+7/2
=5/4(x-1)+5/(x-1)+9/4(y-1)+9/y-1+14
=>S>=2*5/2+2*9/2+14=28
Dấu = xảy ra khi x=y=3
S=5/4(x-1)+5/x-1+9/4(y-1)+9/(y-1)+7/4(x+y)+7/2
=5/4(x-1)+5/(x-1)+9/4(y-1)+9/y-1+14
=>S>=2*5/2+2*9/2+14=28
Dấu = xảy ra khi x=y=3
Cho x > 1; y > 1 và x + y = 6. Tìm GTNN của:
S = 3x + 4y + \(\frac{5}{x-1}+\frac{9}{x-1}\)
A = \(\dfrac{5xy^2-3z}{3xy}+\dfrac{4x^2y+3z}{3xy}\)
B = \(\dfrac{3y+5}{y-1}+\dfrac{-y^2-4y}{1-y}+\dfrac{y^2+y+7}{y-1}\)
C = \(\dfrac{6x}{x^2-9}+\dfrac{5x}{x-3}+\dfrac{x}{x+3}\)
D = \(\dfrac{1-3x}{2x}+\dfrac{3x-2}{2x-1}+\dfrac{3x-2}{2x-4x^2}\)
E = \(\dfrac{x^3+2x}{x^3+1}+\dfrac{2x}{x^2-x+1}+\dfrac{1}{x+1}\)
1.cho x,y thỏa mãn: x² + y² = 1. Chứng minh rằng: -5 ≤ 3x+4y ≤5
2. cho x,y thỏa mãn : x² +y² =6 . Tìm GTLN và GTNN của P=x-√(5y)
Dùng BDT Bunhia nhá các bạn
1.cho x > 0. tìm GTNN của A = \(\dfrac{3x^4+16}{x^3}\)
2. cho x,y,z > 0 thỏa mãn x+y+z=2. tìm GTNN của biểu thức:
P=\(\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\)
giúp mình với ạ, mình đang cần gấp trong tối nay ạ.
Cho biểu thức N = \(\left(\dfrac{x^2}{x^2-y^2}+\dfrac{y}{x-y}\right):\dfrac{x^3-y^3}{x^5-x^4y-xy^4+y^5}\)
a. Rút gọn N
b. TÍnh giá trị của N biết xy = 1; x + y = 0
Cho biểu thức N = \(\left(\dfrac{x^2}{x^2-y^2}+\dfrac{y}{x-y}\right):\dfrac{x^3-y^3}{x^5-x^4y-xy^4+y^5}\)
a. Rút gọn N
b. TÍnh giá trị của N biết xy = 1; x + y = 0
1.Tính \(\dfrac{x}{x+2}-\dfrac{x}{x-2}\)
2.Phân tích đa thức thành nhân tử
1)\(\left(x^2y^2-8\right)-1\)
2)\(x^3y-2x^2y+xy-xy^3\)
3)\(x^3-2x^2y+xy^2\)
4)\(x^2+2x-y^2+1\)
5)\(x^2+2x-4y^2+1\)
6)\(x^2-6x-y^2+9\)
Thực hiện phép tính:
a) \(\dfrac{x+2y}{xy}\div\dfrac{x^2+4xy+4y^2}{2x^2}\)
b) \(\dfrac{4x^3-xy^2}{x^2+xy+y^2}\div\dfrac{\left(2x-y\right)^3}{x^3-y^3}\)
c) \(\dfrac{x+3}{x+2}\div\dfrac{3x+9}{2x-1}\div\dfrac{4x-2}{2x+4}\)
d) \(\dfrac{x+1}{x+2}\div\left(\dfrac{2x^2}{2x-3}\times\dfrac{3x+3}{4x^3}\right)\)
Cho x,y,z>0 sao cho x+y+z=5. Tìm gtnn của A=\(\dfrac{4x}{y^2+4}+\dfrac{4y}{z^2+4}+\dfrac{4z}{x^2+4}\)