\(\)
\(\frac{x}{zy}:\frac{y}{zx}=\frac{x}{zy}.\frac{zx}{y}=\frac{x^2z}{zy^2}=\frac{x^2}{y^2}\)
\(mà3x=2y\Rightarrow\frac{x}{y}=\frac{2}{3}\Rightarrow\frac{x^2}{y^2}=\frac{2^2}{3^2}=\frac{4}{9}\)
\(\)
\(\frac{x}{zy}:\frac{y}{zx}=\frac{x}{zy}.\frac{zx}{y}=\frac{x^2z}{zy^2}=\frac{x^2}{y^2}\)
\(mà3x=2y\Rightarrow\frac{x}{y}=\frac{2}{3}\Rightarrow\frac{x^2}{y^2}=\frac{2^2}{3^2}=\frac{4}{9}\)
Cho hệ 9 x 2 − 4 y 2 = 5 log m 3 x + 2 y − log 3 3 x − 2 y = 1 có nghiệm x ; y thỏa mãn 3 x + 2 y ≤ 5. Khi đó giá trị lớn nhất của m là
A. -5
B. log 3 5
C. 5
D. log 5 3
Cho các số thực x,y,z khác 0 thỏa mãn 3 x = 4 y = 12 − z . Tính giá trị của biểu P = x y + y z + z x ,
A. 12
B. 144
C. 0
D. 1
Cho 0 ≤ x , y ≤ 1 thỏa mãn 2017 1 − x − y = x 2 + 2018 y 2 − 2 y + 2019 . Gọi M,mlần lượt là giá trị lớn nhất, giá trị nhỏ nhất của biểu thức S = 4 x 2 + 3 y 4 y 2 + 3 x + 25 x y . Khi đó M + m bằng bao nhiêu?
A. 136/3
B. 391/16
C. 383/16
D. 25/2
Cho 0 ≤ x ; y ≤ 1 thỏa mãn 2017 1 − x − y = x 2 + 2018 x 2 − 2 y + 2019 . Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của biểu thức S = 4 x 2 + 3 y 4 y 2 + 3 x + 25 x y . Khi đó M + m bằng bao nhiêu?
A. 136 3
B. 391 16
C. 383 16
D. 25 2
Cho x, y > 0 thỏa mãn log x + 2 y = log x + log y . Khi đó, giá trị nhỏ nhất của biểu thức P = x 2 1 + 2 y + 4 y 2 1 + x
A. 6
B. 31 5
C. 32 5
D. 39 5
Cho x,y thỏa mãn log 3 x + y x 2 + y 2 + x y + 2 = x x - 9 + y y - 9 + x y . Tìm giá trị lớn nhất của biểu thức P = 3 x + 2 y - 9 x + y - 10 khi x,y thay đổi.
A. 2
B. 3
C. 1
D. 0
Cho x, y >0 thỏa mãn log(x+2y)=logx+logy. Khi đó giá trị nhỏ nhất của biểu thức P = x 2 1 + 2 y + 4 y 2 1 + x là
A. 6.
B. 32/5
C. 31/5
D. 29/5
Cho x , y > 0 thỏa mãn log x + 2 y = log x + log y . Khi đó, giá trị nhỏ nhất của biểu thức P = x 2 1 + 2 y + 4 y 2 1 + x là:
A. 6
B. 32 5
C. 31 5
D. 29 5
Cho ba số thực x, y, z thỏa mãn đồng thời các biểu thức: x + 2 y + 3 z - 10 = 0 , 3 x + y + 2 z - 13 = 0 và 2 x + 3 y + z - 13 = 0 . Tính T = 2 ( x + y + z ) ?
A. T = 12
B. T = -12
C. T = -6
D. T = 6