ta có: x200+x100+1=x100*(x2+x+1)+1
x4+x2+1=x2*(x2+x+1)+1
mà x100*chia hết cho x2
x2+x+1chia hết cho x2+x+1
1chia hết cho 1
--->x100*(x2+x+1) chia hết cho x2*(x2+x+1)
--->x200+x100+1 chia hết cho x4+x2+1(điều phải chứng minh)
ta có: x200+x100+1=x100*(x2+x+1)+1
x4+x2+1=x2*(x2+x+1)+1
mà x100*chia hết cho x2
x2+x+1chia hết cho x2+x+1
1chia hết cho 1
--->x100*(x2+x+1) chia hết cho x2*(x2+x+1)
--->x200+x100+1 chia hết cho x4+x2+1(điều phải chứng minh)
Cho đa thức A(x) = 1 + x2 + x4 + .... + x2n - 2; B= 1 + x + x2 + ... + xn-1. Tìm số nguyên dương n để đa thức A(x) chia hết cho đa thức B(x).
Chứng minh rằng đa thức x4 + 2x3 - x2 - 2x chia hết cho 24 với mọi x thuộc Z
giúp mk nhanh vs ạ
Cho x,y là các số nguyên khác 1 thỏa mãn (x2-1)/(y+1) + (y2-1)/(x+1) là số nguyên . chứng minh rằng x2y22 -1 chia hết cho x+1
Chứng minh rằng với mọi số nguyên thì x,y thì
a) x(x^2+x)+x(x+1)chia hết cho (x+1) b) xy^2-yx^2+xy chia hết cho xy
Bài 1. Cho x, y là hai số nguyên dương thỏa mãn x2 + 2y là một số chính phương. Chứng minh rằng x2 + y là tổng của hai số chính phương
Bài 2. Cho a, b là hai số nguyên. Chứng minh rằng 2a2+2b2 là tổng của hai số chính phương
giả sử a,b là 2 số nguyên tố cùng nhau với 3 và a+b chia hết cho 3
chứng minh rằng x2+xb+1 chia hết cho x2+x+1
giả sử a,b là 2 số nguyên tố cùng nhau với 3 và a+b chia hết cho 3
chứng minh rằng x2+xb+1 chia hết cho x2+x+1
1, cho a và b là 2 số tự nhiên. Biết a chia cho 3 dư 1 , b chia cho 3 dư 2. Chứng minh rằng ab chia cho 3 dư 2
2, chứng minh rằng biểu thức n(2n-3)-2n(n+1) luôn chia hết cho 5 với mọi số nguyên n
3, chứng minh rằng biểu thức (n-1)(3-2n)-n(n+5) chia hết cho 3 với mọi giá trị của n
Chứng minh rằng xm xn 1 chia hết cho x2 x 1 khi và chỉ khi mn−2chia hết cho 3.Áp dụng phân tích thành nhân tử x7 x2 1