a: Xét ΔMNP và ΔPQM có
MN=PQ
NP=QM
MP chung
=>ΔMNP=ΔPQM
b: Xét tứ giác MNPQ có
MQ=NP
MN=PQ
=>MNPQ là hình bình hành
=>MN//PQ và MQ//NP
a: Xét ΔMNP và ΔPQM có
MN=PQ
NP=QM
MP chung
=>ΔMNP=ΔPQM
b: Xét tứ giác MNPQ có
MQ=NP
MN=PQ
=>MNPQ là hình bình hành
=>MN//PQ và MQ//NP
Cho tam giác MNP vuông tại M (MP < MN). Trên cạnh MN lấy điểm Q sao cho MQ = MP, trên tia đối của tia MP lấy điểm R sao cho MR = MN. Chứng minh:
a) P Q ⊥ N R .
b) R Q ⊥ N P .
Cho tam giác MNP( MN<MP) có MQ là phân giác của góc M( Q thuộc NP). Trên MP lấy điểm E sao cho ME=MN
a) Chứng minh: NQ= QE
b) Gọi H là giao điểm của MN và EQ. Chứng minh: Tam giác EMH bằng tam giâc NMP. Từ đó, suy ra tam giác MHP là tam giác cân
c) Hãy so sánh NQ và PQ
Cho tứ giác MNPQ , biết MN song Với QP , MQ song song với NP
cm:
a)MN=PQ
b) MQ=NP (lưu ý chỉ sử dụng hai tam giác băng nhau)
cho tam giác MNP ( MN < MP ) có MQ là phân giác của góc M ( Q thuộc NP ) MP lấy điểm E sao cho ME = MN
a) C/m : NQ = QE
b) Gọi H là giao điểm của MN và EQ . C/m : tam giác EMH = tam giác NMP . Từ đó suy ra tam giác MHP là tam giác cân
c) hãy so sánh NQ và PQ
cho tam giác mnp vuông tại m đường trung tuyến pq a cho bt np=10cm mp=6cm.
a)tính độ dài đoạn thẳng mn,nq
b) trên tia đối của tia qp lấy điểm d sao cho qd =qp
cm tam giác qmp= tam giác qnd và mp=nd
c) cmr mp+np > 2qp
d) gọi k là điểm trên đoạn thẳng mq sao cho mk=2/3mq
gọi h là giao điểm của pk và md
y là giao điểm của nh và pd
cmr pd=3yd
cho tam giác ABC kẻ tia phân giác Bx của góc B , Bx cắt AC tại M. từ M kẻ đường thẳng song song với AB , nó cắt BC tại N . từ N kẻ Ny SONG SONG VỚI Bx chứng minh; a) góc xBC = góc BMN .
b) Ny là tia phân giác của góc MNC . c) gọi P là giao điểm của Ny và AC . trên tia đối của tia MB lấy điểm Q sao cho MQ=NP . chứng minh tam giác MNP = tam giác PQM , MN // PQ
Cho tam giác MNP. Tại đỉnh M dựng góc xMN so le trong với góc N. Trên tia Mx lấy điểm Q sao cho đoạn thẳng MQ=NP, đoạn thẳng PQ cắt đoạn thẳng MN tại O.
a) chứng minh O là trung điểm đoạn thẳng MN.
b) chứng minh 2 tam giác MOP và NOQ bằng nhau.
Bài 5. Cho tam giác MNP có MN = MP. Gọi I là trung điểm của cạnh NP.
a)CMR: tam giác MNI=tam giác MPI, từ đó chứng minh MI vuông góc với NP.
b)Trên tia đối của tia IM lấy điểm Q sao cho IQ = IM. CMR: MN // PQ.
c)Lấy điểm E trên MN và điểm F trên PQ sao cho ME = QF. Chứng minh rằng: Ba điểm E, I, F thẳng hàng.
mik đang càn gaaso :((
cho tam giác mnp có mn<mp. mq là phân giác góc m. trên tia mp lấy e sao cho me=mn. h là giao điểm của mn và eq.
a. chứng minh nq=ne
b. tam giác emh là tam giác gì. từ đó suy ra tam giác mhp cân
c. so sánh mq,pq