tứ giác ABCD nội tiếp đường tròn đường kính AD.Hai đường chéo AB và CD cắt nhau tại E, và F vuông góc với AD ( F thuộc AD). Chứng minh tứ giác DCEF nội tiếp
Cho tứ giác ABCD nội tiếp đường tròn đường kính AD. Hai đường chéo AC và BD cắt nhau tại E . Kẻ EF vuông góc AD . CMR Các tứ giác ABEF , DCEF nội tiếp .
Cho tứ giác ABCD nội tiếp trong một đường tròn và P là trung điểm của cung AB không chứa C và D. Hai dây PC và PD lần lượt cắt AB tại E và F. Các dây AD và PC kéo dài cắt nhau tại I: các dây BC và PD kéo dài cắt nhau tại K. Chứng minh rằng:
a/ Góc CID bằng góc CKD.
b/ Tứ giác CDFE nội tiếp được
. c/ IK // AB.
d/ Đường tròn ngoại tiếp tam giác AFD tiếp xúc với PA tại A. ai giúp em câu d với ạ
Tứ giác ABCD ngoại tiếp một đường tròn, đường tròn này tiếp xúc với các cạnh AB, AC, CD và AD tại các điểm tương ứng K, L, M, N. Chứng minh rằng đường thẳng nối K với L, M với N và phần kéo dài của đường chéo AC hoặc song song hoặc đồng quy
Câu 1 cho tứ giác ABCD nội tiếp nửa đường tròn kính AD. Hai đường chéo AC và BD cắt nhau tại d vẽ AD vuông góc với ad chứng minh A. Tứ giác ABEF nội tiếp B. AC là tia phân giác của góc BCF Câu 8 cho đường tròn tâm o đường kính AB. Vẽ dây cung CD vuông góc AB tại I (I nằm giữa a và o) lấy điểm e trên cung nhỏ BC (e khác b và c) AE cắt CD tại F. Chứng minh A. BEFI là tứ giác nội tiếp B. AE x AF = AC²
Cho tứ giác ABCD nội tiếp nửa đường tròn đường kính AD. Hai đường chéo AC và BD cắt nhau tại E. Kẻ EF vuông góc với AD. Gọi M là trung điểm của DE. Chứng minh rằng: Các tứ giác ABEF, DCEF nội tiếp được
cho tứ giác ABCD nội tiếp nửa đường tròn, đường kính AD. hai đường chéo AC và BD cắt nhau tại E, EF vuông góc với AD tại F. cm ABeF và DCEF là các tứ giác nội tiếp
Cho tứ giác ABCD nội tiếp nửa đường tròn đường kính AD. Hai đường chéo AC và BD cắt nhau tại E. Vẽ EF vuông góc với AD ( F thuộc AD), CF cắt đường trong tại M. Chứng minh rằng:
a) các tứ giác ABEF;DCEF nội tiếp đường tròn.
B) tia CA là tia phân giác của góc BCF
C) BM vuông góc AD
Cho tứ giác ABCD nội tiếp nửa đường tròn đường kính AD. Hai đường chéo AC và BD cắt nhau tại E. Kẻ EF vuông góc với AD. Gọi M là trung điểm của DE. Chứng minh rằng: Tứ giác BCMF nội tiếp được.