Cho tứ giác ABCD nội tiếp nửa đường tròn đường kính AD. Hai đường chéo AC và BD cắt nhau tại E. Kẻ EF vuông góc AD tại F. Gọi M là trung điểm DE. Chứng minh:
a) Các tứ giác ABEF, DCEF nội tiếp
b) CA là phân giác góc BCF
c) Tứ giác BCMF nội tiếp
Cho tứ giác ABCD nội tiếp nửa đường tròn đường kính AD. Hai đường chéo AC và BD cắt nhau tại E. Kẻ EF vuông góc với AD. Gọi M là trung điểm của DE. Chứng minh rằng: Tứ giác BCMF nội tiếp được.
Cho tứ giác ABCD nội tiếp nửa đường tròn đường kính AD , hai đường chéo AC và BD cắt nhau tại E . Vẽ EF vuông góc với AD , gọi M là trung điểm của DE. Chứng Minh rằng :
a)Các tứ giác ABEF và DCEF nội tiếp được
b) Tia CA là phân giác của góc BCF
Cho tứ giác ABCD nội tiếp đường tròn đường kính AD. Hai đường chéo AC và BD cắt nhau tại E . Kẻ EF vuông góc AD . CMR Các tứ giác ABEF , DCEF nội tiếp .
Cho tứ giác ABCD nội tiếp nửa đường tròn đường kính AD. Hai đường chéo AC và BD cắt nhau tại E. Vẽ EF vuông góc với AD ( F thuộc AD), CF cắt đường trong tại M. Chứng minh rằng:
a) các tứ giác ABEF;DCEF nội tiếp đường tròn.
B) tia CA là tia phân giác của góc BCF
C) BM vuông góc AD
cho tứ giác ABCD nội tiếp nửa đường tròn, đường kính AD. hai đường chéo AC và BD cắt nhau tại E, EF vuông góc với AD tại F. cm ABeF và DCEF là các tứ giác nội tiếp
Cho tứ giác ABCD nội tiếp nửa đường tròn đường kính AD. Hai đường chéo AC và BD cắt nhau tại E. Kẻ EF vuông góc với AD. Gọi M là trung điểm của DE. Chứng minh rằng: Tia CA là tia phân giác của góc BCF
Cho tứ giác ABCD nội tiếp nửa đưởng tròn đường kính AD. Hai đường chéo AC và BD cắt nhau tại E. Vẽ EF vuông góc vớI AD. Chứng minh:
a, Tứ giác ABEF, DCEF nội tiếp
b, CA là phân giác của góc BCF
c, Gọi M là trung điểm của DE, chứng minh tứ giác BCMF nội tiếp.
MỌI NGƯỜI AI BIẾT LÀM GIẢI GIÚP MÌNH PHẦN C. CẢM ƠN NHIỀU <3
Cho tứ giác ABCD nội tiếp đường tròn đường kính AD. Hai đường chéo
ac và BD cắt nhau tại E. Kẻ EF vuông góc AD. Gọi M là trung điểm của AE. Chứng minh rằng:
a) Thứ giác ABEF nội tiếp
b) BD là phân giác góc CBF