Cho tứ diện S.ABC. Gọi D là điểm trên SA, E là điểm trên SB và F là điểm trên AC (DE và AB không song song). Tìm giao điểm của BC với mặt phẳng (DEF).
A. M với M = D F ∩ B C
B. M với M = D E ∩ B C
C. M với M = N F ∩ B C , N = D E ∩ A B
D. M với M = E F ∩ B C
Cho tứ diện đều S.ABC. Gọi I là trung điểm của đoạn AB, M là điểm di động trên đoạn AI. Qua M vẽ mặt phẳng α song song với (SIC). Thiết diện tạo bởi và tứ diện S.ABC là:
A. hình bình hành.
B. tam giác cân tại M.
C. tam giác đều.
D. hình thoi.
Cho hình chóp S.ABC có SA=SB=CA=CB=AB=a, S C = a 3 2 , G là trọng tâm của tam giác ABC. là mặt phẳng đi qua G, song song với các đường thẳng AB và SB. Gọi M, N, P lần lượt là giao điểm của với các đường thẳng BC, AC, SC. Góc giữa hai mặt phẳng (MNP) và (ABC) bằng
A. 90 0 C
B. 45 0 C
C. 30 0 C
D. 60 0 C
Cho hình chóp S.ABC có đáy là tam giác vuông tại B, AB = 1, AC = 2; cạnh bên SA vuông góc với đáy và SA = 1. Gọi I là trung điểm của AC. Xét M là điểm thay đổi trên cạnh AB sao cho A M = x 0 < x < 1 và (P) là mặt phẳng đi qua M, song song với SA và IB. Thiết diện của hình chóp với mặt phẳng (P) có diện tích lớn nhất thì giá trị của x bằng.
A. 2 3
B. 3 4
C. 1 3
D. 1 2
Cho tứ diện đều S.ABC. Gọi I là trung điểm của đoạn AB, M là điểm di động trên đoạn AI. Qua M vẽ mặt phẳng α song song với S C I . Tính chu vi của thiết diện tạo bởi α và tứ diện S.ABC tính theo A M = a .
A. a 1 + 3
B. 2 a 1 + 3
C. 3 a 1 + 3
D.Không tính được
Cho tứ diện S.ABC. Gọi I trung điểm của đoạn AB, M là điểm di động trên đoạn AI. Qua M vẽ mặt phẳng α song song (SIC). Thiết diện tạo bởi α với tứ diện S.ABC là
A. Hình bình hành
B. Tam giác cân tại M
C. Tam giác đều
D. Hình thoi
Cho tứ diện S.ABC trên cạnh SA và SB lấy điểm M và N sao cho thỏa tỉ lệ S M A M = 1 2 ; S N N B = 2 , mặt phẳng đi qua MN và song song với SC chia tứ diện thành hai phần, biết tỉ số thể tích của hai phần ấy là K, vậy K là giá trị nào?
A. K = 2 3
B. K = 4 9
C. K = 4 5
D. K = 5 9
Cho điểm M nằm trên cạnh SA, điểm N nằm trên cạnh SB của khối chóp tam giác S.ABC sao cho S M M A = 1 2 ; S N N B = 2 . Mặt phẳng α đi qua MN và song song với SC chia khối chóp thàng 2 phần. Gọi V 1 là thể tích của khối đa diện chứa A , V 2 là thể tích của khối đa diện còn lại. Tính tỉ số V 1 V 2
A. V 1 V 2 = 4 5
B. V 1 V 2 = 5 4
C. V 1 V 2 = 5 6
D. V 1 V 2 = 6 5
Cho hình chóp S.ABC có mỗi mặt bên là một tam giác vuông và S A = S B = S C = a . Gọi M, N, P lần lượt là trung điểm của các cạnh AB, AC, BC; D là điểm đối xứng của S qua P. I là giao điểm của đường thẳng AD với mặt phẳng (SMN). Tính theo a thể tích của khối tứ diện MBSI.
A. a 3 12 .
B. a 3 36 .
C. a 3 6 .
D. 2 a 3 12 .