Để MNPQ là hình bình hành thì M N ∥ P Q và M Q ∥ N P
Khi đó MQ ∥ SB ⇒ Q B Q A = M S M A = k
Đáp án A
Để MNPQ là hình bình hành thì M N ∥ P Q và M Q ∥ N P
Khi đó MQ ∥ SB ⇒ Q B Q A = M S M A = k
Đáp án A
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B. Biết SA vuông góc với mặt phẳng (ABC), AB = a, B C = a 3 , SA = a. Một mặt phẳng (α) qua A vuông góc SC tại H và cắt SB tại K. Tính thể tích khối chóp S.AHK theo a.
A. V S . A H K = a 3 3 20
B. V S . A H K = a 3 3 30
C. V S . A H K = a 3 3 60
D. V S . A H K = a 3 3 90
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B. Biết SA vuông góc với mặt phẳng (ABC), A B = a , B C = a 3 , S A = a . Một mặt phẳng α qua A vuông góc SC tại H và cắt SB tại K. Tính thể tích khối chóp S.AHK theo a
A. V S . A H K = a 3 3 20
B. V S . A H K = a 3 3 30
C. V S . A H K = a 3 3 60
D. V S . A H K = a 3 3 90
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại... với mặt phẳng (ABC),
A B = a , B C = a 3 , S A = a . Một mặt phẳng ( α ) qua A vuông góc SC tại H và cắt SB tại K. Tính thể tích khối chóp S.AHK theo a.
A. V S . A H K = a 3 3 20
B. V S . A H K = a 3 3 30
C. V S . A H K = a 3 3 60
D. V S . A H K = a 3 3 90
Cho hình chóp S.ABC có đáy là tam giác vuông tại B, A B = a , B C = a 3, biết SA=a và vuông góc với mặt phẳng đáy. Một mặt phẳng α đi qua A , vuông góc với SC tại H , cắt SB tại K . Tính thể tích khối chóp S.AHK theo a
A. a 3 3 30 .
B. 5 a 3 3 60 .
C. a 3 3 60 .
D. a 3 3 10 .
Cho hình chóp S . A B C D có đáy ABCD là hình bình hành. Gọi M là điểm trên cạnh SC sao cho 5 S M = 2 S C , mặt phẳng α qua A, M và song song với đường thẳng BD cắt hai cạnh SB, SD lần lượt tại H, K. Tính tỉ số thể tích V S . A H M K V S . A B C D
A. 1 5
B. 8 35
C. 1 7
D. 6 35
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M là điểm trên cạnh SC sao cho 5 S M = 2 S C , mặt phẳng α đi qua A, M và song song với đường thẳng BD cắt hai cạnh SB, SD lần lượt tại hai điểm H, K. Tính tỉ số thể tích V S . A H M K V S . A B C D .
A. 1 5
B. 8 35
C. 1 7
D. 6 35
Cho khối chóp S.ABC có SA=AB=BC=2 và M là một điểm thuộc SB. Dựng thiết diện qua M song song với SA, BC cắt AB, AC, SC lần lượt tại N, P, Q. Diện tích thiết diện MNPQ lớn nhất bằng
A. 1
B. 2
C. 1/2
D. 1/4
Cho khối chóp S.ABC có SA=AB=BC=2 và M là một điểm thuộc SB. Dựng thiết diện qua M song song với SA, BC cắt AB, AC, SC lần lượt tại N, P, Q. Diện tích thiết diện MNPQ lớn nhất bằng
A. 1
B. 2
C. 1/2
D. 1/4
Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi K là trung điểm SC. Mặt phẳng (P) qua AK cắt các cạnh SB, SD lần lượt tại M, N. Gọi V và V’ lần lượt là thể tích các khối chóp S.ABCD và S.AMKN. Tỉ số V ' V có giá trị nhỏ nhất bằng
A. 1 5 .
B. 3 8 .
C. 1 3 .
D. 1 2 .