Cho tứ diện đều ABCD, gọi M, N lần lượt là trung điểm của các cạnh AB, CD. Gọi α là số đo của góc giữa hai đường thẳng AN, CM. Khi đó cos α bằng
Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm AD và AC. Gọi G là trọng tâm tam giác BCD. Giao tuyến của hai mặt phẳng (GMN) và (BCD) là đường thẳng:
A. Qua M và song song với AB
B. Qua N và song song với BD
C. Qua G và song song với CD
D. Qua G và song song với BC
Cho tứ diện đều ABCD cạnh a. Gọi M,N,G lần lượt là trung điểm của các cạnh AB, BC và trọng tâm tam giác ACD. Diện tích của thiết diện khi cắt tứ diện bởi mặt phẳng (MNG) bằng
Cho hình hộp đứng ABCD.A'B'C'D' có đáy là hình thoi, tam giác ABD đều. Gọi M và N lần lượt là trung điểm BC và C'D', biết rằng MN ⊥ B'D. Gọi α là góc tạo bởi đường thẳng MN và mặt đáy (ABCD), khi đó giá trị cos α bằng
A. cos α = 1 3
B. cos α = 3 2
C. cos α = 1 10
D. cos α = 1 2
Cho lăng trụ A B C . A ' B ' C ' có đáy ABC là tam giác đều cạnh 2a, hình chiếu vuông góc của A lên mặt phẳng ( A ' B ' C ' ) là trung điểm H của A’B’. Gọi M, N lần lượt là trung điểm của A A ' , B ' C ' . Biết rằng AH = 2a và α là số đo của góc giữa đường thẳng MN và mặt phẳng ( A C ' H ) . Khi đó cos α bằng
Cho tứ diện ABCD có ABC và DBC là hai tam giác đều cạnh chung BC = 2. Gọi I là trung điểm của BC, A I D ^ = 2 α mà cos 2 α = - 1 3 . Hãy xác định tâm O của mặt cầu ngoại tiếp tứ diện đó.
A. O là trung điểm của AD.
B. O là trung điểm của BD.
C. O thuộc mặt phẳng (ADB).
D. O là trung điểm của AB.
Cho tứ diện ABCD có ABC và DBC là hai tam giác đều cạnh chung BC = 2. Gọi I là trung điểm của BC, A I D ^ = 2 α mà cos 2 α = - 1 3 . Hãy xác định tâm O của mặt cầu ngoại tiếp tứ diện đó.
A. O là trung điểm của AD.
B. O là trung điểm của BD.
C. O thuộc mặt phẳng (ADB).
D. O là trung điểm của AB.
Cho hình chóp tứ giác đều S.ABCD có đáy ABCD là hình vuông cạnh a, tâm O. Gọi M và N lần lượt là trung điểm của hai cạnh SA và BC, biết MN = a 6 2 . Khi đó giá trị sin của góc giữa đường thẳng MN và mặt phẳng (SBD) bằng
A. 2 5 .
B. 3 3 .
C. 5 5 .
D. 3 .
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = a, A D = 2 a , cạnh bên SA vuông góc với đáy và SA = 2a. Gọi M, N lần lượt là trung điểm của cạnh SA, CD và α là góc giữa đường thẳng MN và mặt phẳng (SBD). Khi đó sin α bằng