Cho tứ diện đều ABCD. Gọi M, N. P lần lượt là trung điểm của các cạnh AB, BC. AD và G là trọng tâm của tam giác BCD. Gọi α là số đo của góc giữa hai đường thẳng MG và NP. Khi đó cos α bằng
Cho tứ diện ABCD có A B = C D = a , A C = B D = b , A D = B C = c . Gọi α là số đo của góc hợp bởi hai đường thẳng AB, CD. Khi đó cos α bằng
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = a, A D = 2 a , cạnh bên SA vuông góc với đáy và SA = 2a. Gọi M, N lần lượt là trung điểm của cạnh SA, CD và α là góc giữa đường thẳng MN và mặt phẳng (SBD). Khi đó sin α bằng
Cho tứ diện ABCD có A B = C D = 2 3 . Gọi M và N lần lượt là trung điểm các cạnh AC, BD. Biết rằng MN = 3. Số đo góc hợp bởi hai đường thẳng AB, CD bằng
Cho hình hộp đứng ABCD.A'B'C'D' có đáy là hình thoi, tam giác ABD đều. Gọi M và N lần lượt là trung điểm BC và C'D', biết rằng MN ⊥ B'D. Gọi α là góc tạo bởi đường thẳng MN và mặt đáy (ABCD), khi đó giá trị cos α bằng
A. cos α = 1 3
B. cos α = 3 2
C. cos α = 1 10
D. cos α = 1 2
Cho lăng trụ A B C . A ' B ' C ' có đáy ABC là tam giác đều cạnh 2a, hình chiếu vuông góc của A lên mặt phẳng ( A ' B ' C ' ) là trung điểm H của A’B’. Gọi M, N lần lượt là trung điểm của A A ' , B ' C ' . Biết rằng AH = 2a và α là số đo của góc giữa đường thẳng MN và mặt phẳng ( A C ' H ) . Khi đó cos α bằng
Cho hình chóp đều S.ABCD có tất cả các cạnh bằng a. Gọi M là trung điểm cạnh SC. Gọi α là số đo của góc hợp bởi hai đường thẳng AM và SB. Khi đó cos α bằng
Cho hình chóp S.ABCD có đáy là hình thang vuông tại C và D, A D = 3 a , B C = C D = 4 a ; cạnh bên SA vuông góc với đáy và S A = a 3 . Gọi M là điểm nằm trên cạnh AD sao cho A M = a và N là trung điểm của CD. Gọi α là số đo của góc giữa hai đường thẳng SM và BN. Khi đó cos α bằng
Cho hình lập phương A B C D . A ' B ' C ' D ' cạnh a. Gọi E, F lần lượt là trung điểm của B'C' và AD. Gọi α là số đo của góc giữa hai mặt phẳng (BEF) và (ADD’A’). Khi đó cos α bằng