Cho tứ diện đều ABCD có cạnh bằng a, M là trung điểm của cạnh BC. Gọi α là góc giữa hai đường thẳng AB và DM, khi đó c o s α cbằng
A . 3 6
B . 2 2
C . 3 2
D . 1 2
Cho tứ diện đều ABCD, M là trung điểm BC. Tính cosin của góc giữa hai đường thẳng AB và DM?
A. 3 6
B. 2 2
C. 3 2
D. 1 2
Cho tứ diện đều ABCD cạnh AB=1. Gọi M, N, P lần lượt là trung điểm các cạnh AB, BC, AD. Tính khoảng cách giữa hai đường thẳng CM và NP.
A. 10 10
B. 10 20
C. 3 10 10
D. 3 10 20
Cho tứ diện ABCD gọi M, N lần lượt là trung điểm của BC và AD.
Biết A B = C D = a , M N = a 3 2 . Tính góc giữa hai đường thẳng AB và CD.
A. 45 °
B. 30 °
C. 60 °
D. 90 °
Cho tứ diện ABCD có BD vuông góc với AB và CD. Gọi P và Q lần lượt là trung điểm của của các cạnh CD và AB thỏa mãn BD:CD:PQ:AB = 3:4:5:6 . Gọi φ là góc giữa hai đường thẳng AB và CD. Giá trị của cosφ bằng
A. 7/8.
B. 1/2.
C. 11/16.
D. 1/4.
Cho tứ diện đều ABCD. Gọi M, N. P lần lượt là trung điểm của các cạnh AB, BC. AD và G là trọng tâm của tam giác BCD. Gọi α là số đo của góc giữa hai đường thẳng MG và NP. Khi đó cosα bằng
A. 2 6
B. 2 4
C. 3 6
D. 3 4
Cho tứ diện đều ABCD có cạnh bằng a. Gọi E,F lần lượt là các điểm đối xứng của B qua C,D và M là trung điểm của đoạn thẳng AB. Gọi (T) là thiết diện của tứ diện ABCD khi cắt bởi mặt phẳng (MEF). Tính diện tích S của thiết diện (T)
A. S = a 2 2
B. S = a 2 3 6
C. S = a 2 3 9
D. S = a 2 6
Cho tứ diện đều ABCD có cạnh bằng a. Gọi E,F lần lượt là các điểm đối xứng của B qua C, D và M là trung điểm của đoạn thẳng AB. Gọi (T) là thiết diện của tứ diện ABCD khi cắt bởi mặt phẳng (MEF). Tính diện tích S của thiết diện (T).
A. S = a 2 2 .
B. S = a 2 3 6 .
C. S = a 2 3 9 .
D. S = a 2 6 .
Cho tứ diện đều ABCD có cạnh bằng a. Gọi M, N lần lượt là trung điểm của các cạnh AB, BC và E là điểm đối xứng với B qua D. Mặt phẳng (MNE) chia khối tứ diện ABCD thành hai khối đa diện, trong đó khối chứa điểm A có thể tích V. Tính V
A. 11 2 a 3 216
B. 7 2 a 3 216
C. 2 a 3 8
D. 13 2 a 3 216