Cho tứ diện ABCD. Gọi M,N,P lần lượt là trung điểm của các cạnh BC, BD,CD.
a. Xác định giao tuyến của hai mặt phẳng (AMN) và (ACD).
b. Chứng minh rằng đường thẳng BC song song với mặt phẳng (ANP)
c. Gọi G, H lần lượt là trọng tâm của tam giác ABC và ACD. Chứng minh GH // BD.
Cho tứ diện ABCD. Gọi M và N lần lượt là trung điểm của các cạnh AB và CD, trên cạnh AD lấy điểm P không trùng với trung điểm của AD.
a) Gọi E là giao điểm của đường thẳng MP và đường thẳng BD. Tìm giao tuyến của hai mặt phẳng (PMN) và (BCD).
b) Tìm giao điểm của hai mặt phẳng (PMN) và BC.
câu 1 :Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của các cạnh AB, CD và trên cạnh BC lấy điểm P sao cho BP = 2PC
a) Tìm giao tuyến của (MNP) với (ABD)
b) Tìm giao điểm của AD với (MNP). Từ đó xác định thiết diện của (MNP) với tứ diện
câu 2: Cho hình chóp tứgiác S.ABCD có AB và CD không song song. Gọi M là trung điểm của SD
a) Tìm giao tuyến của hai mp (SAC) và (SBD)
b) Tìm giao điểm của BM với (SAC)
c) Tìm giao điểm của (ABM) với SC
Câu 1 :Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của các cạnh AB, CD và trên cạnh BC lấy điểm P sao cho BP = 2PC a) Tìm giao tuyến của (MNP) với (ABD) b) Tìm giao điểm của AD với (MNP). Từ đó xác định thiết diện của (MNP) với tứ diện
Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của AB, BC. Trên cạnh CD lấy
điểm P sao cho PD=2PC .
a) Tìm giao điểm của đường thẳng BD và mặt phẳng (MNP).
b) Tìm giao tuyến của mặt phẳng (MNP) và (ABD).
Cho tứ diện ABCD và điểm M thuộc miền trong của tam giác ACD. Gọi I và J lần lượt là 2 điểm trên cạnh BC và BD sao cho IJ không song song với CD. Gọi H và K lần lượt là giao điểm của IJ và CD; MH và AC. giao tuyến của 2 mặt phẳng (ACD) và (IJM) là
A. KI
B. KJ
C. MI
D. MH
Cho tứ diện ABCD. Trên cạnh AB lấy điểm I và lấy các điểm J, K lần lượt là điểm thuộc miền trong các tam giác BCD và ACD. Gọi L là giao điểm của JK với mặt phẳng (ABC)
a) Hãy xác định điểm L.
b) Tìm giao tuyến của mặt phẳng (IJK) với các mặt của tứ diện ABCD.
Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của AC và BC, P là điểm thuộc DB sao cho PB = 2PD. Gọi Q là giao điểm của CD với mặt phẳng (MNP). Giao tuyến của hai mặt phẳng (MNP) và (ACD) là:
A. MP
B. NQ
C. MQ
D. AP
Cho tứ diện ABCD và điểm M thuộc miền trong của tam giác ACD . Gọi I và J tương ứng là hai điểm trên cạnh BC và BD sao cho IJ không song song với CD
a) Hãy xác định giao tuyến của hai mặt phẳng (IJM) và (ACD).
b) Lấy N là điểm thuộc miền trong của tam giác ABD sao cho JN cắt đoạn AB tại L. Tìm giao tuyến của hai mặt phẳng (MNJ) và (ABC)