Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Pham Trong Bach

Cho tứ diện ABCD và điểm M thuộc miền trong của tam giác ACD. Gọi I và J lần lượt là 2 điểm trên cạnh BC và BD sao cho IJ không song song với CD. Gọi H và K lần lượt là giao điểm của IJ và CD; MH và AC. giao tuyến của 2 mặt phẳng (ACD) và (IJM) là

A. KI 

B. KJ         

C. MI 

D. MH

Cao Minh Tâm
13 tháng 5 2019 lúc 6:24

Trong mặt phẳng (BCD); IJ cắt CD tại H nên H thuộc (ACD)

Điểm H thuộc IJ m suy ra bốn điểm M; I; J; H  đồng phẳng.

Nên trong mặt phẳng (IJM) , MH cắt IJ tại H và  M H ⊂ I J M .

Mặt khác  M ∈ A C D H ∈ A C D    ⇒    M H ⊂ A C D .

Vậy giao tuyến của 2 mặt phẳng (ACD) và ( IJM) là MH

Chọn D. 


Các câu hỏi tương tự
Pham Trong Bach
Xem chi tiết
Master Sword
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
nguyễn thanh
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
nguyen thi ngoc linh
Xem chi tiết