Đáp án D
Gọi M và N lần lượt là trung điểm BD và BC khi đó A I A M = A J A N = 2 3 ⇒ I J / / M N
Mặt khác MN là đường trung bình của tam giác BCD do đó MN // CD do đó IJ // CD.
Đáp án D
Gọi M và N lần lượt là trung điểm BD và BC khi đó A I A M = A J A N = 2 3 ⇒ I J / / M N
Mặt khác MN là đường trung bình của tam giác BCD do đó MN // CD do đó IJ // CD.
Cho hình chóp S.ABCD có S A ⊥ A B C D đáy ABCD là hình thang vuông có chiều cao A B = a . Gọi I và J lần lượt là trung điểm AB,CD . Tính khoảng cách giữa đường thẳng IJ và (SAD).
A. a/3
B. a 2 2
C. a 3 3
D. a/2
Cho tứ diện ABCD có AB = a, CD = b. Gọi I, J lần lượt là trung điểm của AB và CD, giả sử A B ⊥ C D . Mặt phẳng α qua M nằm trên đoạn IJ và song song với AB và CD. Tính diện tích thiết diện của tứ diện ABCD với mặt phẳng α biết I M = 1 3 I J
A. ab
B. a b 9
C. 2ab
D. 2 a b 9
Cho tứ diện ABCD. Gọi E và F lần lượt là trung điểm của AB và CD; G là trọng tâm tam giác BCD. Giao điểm của đường thẳng EG và mặt phẳng (ACD) là
A. điểm F
B. giao điểm của đường thẳng EG và AC
C. giao điểm của đường thẳng EG và CD
D. giao điểm của đường thẳng EG và AF
Cho hình lập phương ABCD. A 'B 'C 'D ' có I, J tương ứng là trung điểm của BC và BB ' . Góc giữa hai đường thẳng AC và IJ bằng
A. 45 °
B. 60 °
C. 30 °
D. 120 °
Cho tứ diện đều ABCD cạnh a. Gọi M, N lần lượt là trung điểm của CD và AB. Lấy I ∈ A C , J ∈ D N sao cho IJ // BM. Độ dài IJ theo a là
A. a 3 3
B. a 2 3
C. a 3 4
D. a 2 2
Cho tứ diện đều ABCD. Gọi E là trọng tâm tam giác BCD và F là trung điểm của AE. Gọi H là hình chiếu vuông góc của F trên đường thẳng AD. Đường thẳng FH cắt mặt phẳng (ABC) tại điểm M. Mệnh đề nào sau đây sai?
A. M là trung điểm của BC
B. M là trực tâm của tam giác ABC
C. M là tâm đường tròn ngoại tiếp tam giác ABC
D. M là tâm đường tròn nội tiếp tam giác ABC
Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của AD, BC. Gọi G là trọng tâm ∆ B C D Khi đó, giao điểm của đường thẳng MG và mặt phẳng (ABC) là giao điểm của đường thẳng MG và đường thẳng
A. BC
B. AC
C. AN
D. AB
Trong không gian, cho các mệnh đề sau:
I. Hai đường thẳng phân biệt cùng song song với một mặt phẳng thì song song với nhau.
II. Hai mặt phẳng phân biệt chứa hai đường thẳng song song cắt nhau theo giao tuyến song song với hai đường thẳng đó.
III. Nếu đường thẳng a song song với đường thẳng b, đường thẳng b nằm trên mặt phẳng (P) thì a song song với (P).
IV. Qua điểm A không thuộc mặt phẳng ( α ) , kẻ được đúng một đường thẳng song song với .
Số mệnh đề đúng là
A. 2
B. 0
C. 1
D. 3
Trong không gian cho hai đường thẳng a và b cắt nhau. Đường thẳng c cắt cả hai đường a và b. Có bao nhiêu mệnh đề sai trong các mệnh đề sau
(I) a, b, c luôn đồng phẳng
(II) a, b đồng phẳng
(III) a, c đồng phẳng
A. 0
B. 1
C. 2
D. 3
Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm AD và AC. Gọi G là trọng tâm tam giác BCD. Giao tuyến của hai mặt phẳng (GMN) và (BCD) là đường thẳng:
A. Qua M và song song với AB
B. Qua N và song song với BD
C. Qua G và song song với CD
D. Qua G và song song với BC