Cho tứ diện ABCD Gọi G,E lần lượt là trọng tâm của tam giác A B D v à A B C . Mệnh đề nào dưới đây đúng:
A. G E v à CD chéo nhau
B. G E / / C D
C. GE và AD
D. GE cắt CD
Cho tứ diện ABCD. Gọi G và E lần lượt là trọng tâm của tam giác ABD và ABC. Mệnh đề nào dưới đây là đúng?
A. GE và CD chéo nhau
B. GE//CD
C. GE cắt AD
D. GE cắt CD
Cho tứ diện ABCD. Gọi I, J lần lượt là trọng tâm các tam giác ABC và ABD. Trong các mệnh đề sau, mệnh đề nào đúng?
A. IJ//AB
B. IJ//DC
C. IJ//BD
D. IJ//AC
Cho hình chóp S.ABCD có đáy ABCD là hình thang AB//CD. Gọi I, J lần lượt là trung điểm của các cạnh AD, BC và G là trọng tâm tam giác SAB. Biết thiết diện của hình chóp cắt bởi mặt phẳng (IJG) là hình bình hành. Hỏi khẳng định nào sau đây đúng?
A. AB=3CD
B. A B = 1 3 C D
C. A B = 3 2 C D
D. A B = 2 3 C D
Cho hình chóp S.ABCD có đáy ABCD là hình thang có cạnh đáy AB và CD. Gọi M, N lần lượt là trung điểm của các cạnh AD, BC. G là trọng tâm của tam giác SAB. Thiết diện của hình chóp S.ABCD cắt bởi (IJG) là một tứ giác. Tìm điều kiện của AB,CD để thiết diện đó là hình bình hành?
A. AB = 3CD
B. AB = 2CD
C. CD = 2AB
D. CD = 3AB
Cho tứ diện đều ABCD. Gọi E là trọng tâm tam giác BCD và F là trung điểm của AE. Gọi H là hình chiếu vuông góc của F trên đường thẳng AD. Đường thẳng FH cắt mặt phẳng (ABC) tại điểm M. Mệnh đề nào sau đây sai?
A. M là trung điểm của BC
B. M là trực tâm của tam giác ABC
C. M là tâm đường tròn ngoại tiếp tam giác ABC
D. M là tâm đường tròn nội tiếp tam giác ABC
Cho tứ diện ABCD. Gọi E và F lần lượt là trung điểm của AB và CD; G là trọng tâm tam giác BCD. Giao điểm của đường thẳng EG và mặt phẳng (ACD) là
A. điểm F
B. giao điểm của đường thẳng EG và AC
C. giao điểm của đường thẳng EG và CD
D. giao điểm của đường thẳng EG và AF
Cho tứ diện ABCD. Gọi G là trọng tâm tam giác ABD, M là điểm thuộc cạnh BC sao cho MB = 2MC. Mệnh đề nào sau đây đúng?
A. M G | | B C D
B. M G | | A C D
C. M G | | A B D
D. M G | | A B C
Cho tứ diện ABCD, gọi G 1 , G 2 lần lượt là trọng tâm các tam giác BCD và ACD . Mệnh đề nào sau đây SAI?
A. G 1 G 2 ∥ A B D
B. G 1 G 2 ∥ A B C
C. G 1 G 2 = 2 3 A B
D. Ba đường thẳng B G 1 , A G 2 và CD đồng quy.