Ta có M là điểm chung thứ nhất.
=> Q là điểm chung thứ hai.
Vậy
Chọn B.
Ta có M là điểm chung thứ nhất.
=> Q là điểm chung thứ hai.
Vậy
Chọn B.
Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm các cạnh AD, BC; G là trọng tâm của tam giác BCD. Khi đó, giao điểm của đường thẳng MG và mp (ABC) là:
A. Giao điểm của đường thẳng MG và đường thẳng AN
B. Điểm N
C. Giao điểm của đường thẳng MG và đường thẳng BC
D. Điểm A
Cho tứ diện ABCD. Gọi I là trung điểm của BC, M là điểm trên cạnh DC. Một mp α qua M, song song BC và AI. Gọi P, Q lần lượt là giao điểm của α với BD và AD. Xét các mệnh đề sau:
(1) MP // BC (2) MQ // AC (3) PQ // AI (4) (MPQ) // (ABC)
Số mệnh đề đúng là:
A. 1
B. 3
C. 2
D. 4
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M là điểm di động trên đoạn AB. Qua M vẽ mặt phẳng α song song với mặt phẳng S B C , cắt các cạnh CD, DS, SA lần lượt tại các điểm N, P, Q. Tập hợp các giao điểm I của hai đường thẳng MQ và NP là
A. Một đường thẳng
B. Nửa đường thẳng.
C. Đoạn thẳng song song với AB
D. Tập hợp rỗng
Cho tứ diện ABCD. Gọi M,N,P lần lượt là trung điểm các cạnh BC,CA và AD (tham khảo hình vẽ bên). Biết M N P ^ = 150 0 . Góc giữa hai đường thẳng AB và CD là
A. 30 °
B. 45 °
C. 90 °
D. 60 °
Cho tứ diện ABCD có BD vuông góc với AB và CD. Gọi P và Q lần lượt là trung điểm của của các cạnh CD và AB thỏa mãn BD:CD:PQ:AB = 3:4:5:6 . Gọi φ là góc giữa hai đường thẳng AB và CD. Giá trị của cosφ bằng
A. 7/8.
B. 1/2.
C. 11/16.
D. 1/4.
Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm AD và AC. Gọi G là trọng tâm tam giác BCD. Giao tuyến của hai mặt phẳng (GMN) và (BCD) là đường thẳng:
A. Qua M và song song với AB
B. Qua N và song song với BD
C. Qua G và song song với CD
D. Qua G và song song với BC
Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của AD, BC. Gọi G là trọng tâm ∆ B C D Khi đó, giao điểm của đường thẳng MG và mặt phẳng (ABC) là giao điểm của đường thẳng MG và đường thẳng
A. BC
B. AC
C. AN
D. AB
Trong mp Oxy, cho hình vuông ABCD tâm I. Gọi M,N lần lượt là trung điểm cạnh CD,BI. Tìm tọa độ B,C,D biết A(1;2) và đường thẳng MN có phương trình là: x-2y-2=0 và điểm M có tung độ âm.
Cho tứ diện ABCD. Gọi E và F lần lượt là trung điểm của AB và CD; G là trọng tâm tam giác BCD. Giao điểm của đường thẳng EG và mặt phẳng (ACD) là
A. điểm F
B. giao điểm của đường thẳng EG và AC
C. giao điểm của đường thẳng EG và CD
D. giao điểm của đường thẳng EG và AF