Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho tứ diện ABCD có BC = 3, CD = 4, B C D ⏜ = A B C ⏜ = A D C ⏜ = 90 ° . Góc giữa hai đường thẳng AD và BC bằng 60 ° . Tính thể tích khối cầu ngoại tiếp tứ diện ABCD
A. 127 127 π 6
B. 52 13 π 3
C. 28 7 π 3
D. 32 3 π
Cho tứ diện ABCD có BC=a, C D = a 3 , B C D ^ = A B C ^ = A D C ^ = 90 ° . Góc giữa hai đường thẳng AD và BC bằng 60 ° . Tính bán kính R của mặt cầu ngoại tiếp tứ diện ABCD.
A. a 3 2
B. a 3
C. a
D. a 7 2
Cho khối tứ diện ABCD có B C = 3 , C D = 4 , A B C ^ = B C D ^ = A D C ^ = 90 ° Góc giữa hai đường thẳng AD và BC bằng 60 ° Côsin góc giữa hai mặt phẳng (ABC) và (ACD) bằng
A. 2 43 43
B. 43 86
C. 4 43 43
D. 43 43
Cho khối tứ diện ABCD có B C = 3 ; C d = 4 ; A B C ^ = B C D ^ = A D C ^ = 90 ∘ Góc giữa hai đường thẳng AD và BC bằng 60 độ Côsin góc giữa hai mặt phẳng (ABC) và (ACD) bằng
A. 2 43 43
B. 43 86
C. 4 43 43
D. 43 43
Cho khối tứ diện ABCD có BC=3, CD=4, A B C ^ = B C D ^ = A D C ^ = 90 ° . Góc giữa hai đường thẳng AD và BC bằng 60 0 . Côsin góc giữa hai mặt phẳng (ABC) và (ACD) bằng
A. 2 43 43
B. 43 86
C. 4 43 43
D. 43 43
Cho khối tứ diện ABCD có B C = 3 , C D = 4 , ∠ A B C = ∠ B C D = ∠ A D C = 90 0 . Góc giữa hai đường thẳng AD và BC bằng . Côsin góc giữa hai mặt phẳng A B C v à A C D bằng
A. 43 86
B. 43 43
C. 2 43 43
D. 4 43 43
Cho tứ diện ABCD, đáy BCD là tam giác vuông tại C, B C = C D = a 3 , góc A B C ^ = A D C ^ = 90 ° , khoảng cách từ B đến (ACD) là a 2 . Khi đó thể tích khối cầu ngoại tiếp ABCD là:
A. 4 π a 3 3 .
B. 12 π a 3 .
C. 12 π a 3 3 .
D. 4 π 3 a 3 3 .
Cho tứ diện ABCD có tam giác ABD đều cạnh bằng 2, tam giác ABC vuông tại B, B C = 3 . Khoảng cách giữa hai đường thẳng AB và CD bằng 3 2 . Thể tích khối tứ diện ABCD bằng
A. 3 2
B. 1 2
C. 3 6
D. 1 6
Cho tứ diện ABCD có C D = a 2 , Δ A B C là tam giác đều cạnh a, Δ A C D vuông tại A. Mặt phẳng (BCD) vuông góc với mặt phẳng (ABD). Thể tích của khối cầu ngoại tiếp tứ diện ABCD bằng
A . 4 π a 3 3 .
B . π a 3 6 .
C . 4 π a 3 .
D . π a 3 3 2 .